Applied Acoustics, Год журнала: 2024, Номер 228, С. 110357 - 110357
Опубликована: Окт. 31, 2024
Язык: Английский
Applied Acoustics, Год журнала: 2024, Номер 228, С. 110357 - 110357
Опубликована: Окт. 31, 2024
Язык: Английский
e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2024, Номер 8, С. 100590 - 100590
Опубликована: Май 9, 2024
This paper thoroughly compares thirteen unique Machine Learning (ML) models utilized for Intrusion detection systems (IDS) in a meticulously controlled environment. Unlike previous studies, we introduce novel approach that avoids data leakage, enhancing the reliability of our findings. The study draws upon comprehensively labeled 5G-NIDD dataset covering broad spectrum network behaviors, from benign real-user traffic to various attack scenarios. Our preprocessing and experimental design have been carefully structured eradicate any standout feature methodology significantly improves robustness dependability results compared prior studies. ML are evaluated using performance metrics, including accuracy, precision, recall, F1-score, ROC AUC, execution time. reveal K-Nearest Neighbors model is superior accuracy while Voting Classifier stands out precision F1-score. Decision Tree, Bagging, Extra Trees exhibit strong recall scores. In contrast, AdaBoost falls short across all assessed metrics. Despite displaying only modest on other Naive Bayes excels computational efficiency, offering quickest emphasizes importance understanding models' distinct strengths, drawbacks, trade-offs intrusion detection. It highlights no single universally superior, choice hinges nature dataset, specific application requirements, resources available.
Язык: Английский
Процитировано
8Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июль 12, 2024
Язык: Английский
Процитировано
2International Journal of Electronics and Communication Engineering, Год журнала: 2024, Номер 11(6), С. 107 - 113
Опубликована: Июнь 30, 2024
Intrusion Detection Systems (IDS) are crucial for protecting IT infrastructures against increasingly sophisticated and evolving threats. Faced with complex attacks such as stealthy or polymorphic threats, conventional methods based on rules signatures show their limitations. An innovative IDS approach utilizing a deep neural network integrated into distributed architecture dynamic precise traffic analysis is introduced. Tested the KDD Cup 99 dataset, this method demonstrated an accuracy of 99.90%, recall 99.89%, specificity 100%, marking significant improvement over traditional systems. The exceptional performance obtained encourages broader adoption system suggests potential revolutionizing security practices. implications findings current strategies also discussed, directions future research proposed.
Язык: Английский
Процитировано
0Multimedia Tools and Applications, Год журнала: 2024, Номер unknown
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
0Applied Acoustics, Год журнала: 2024, Номер 228, С. 110357 - 110357
Опубликована: Окт. 31, 2024
Язык: Английский
Процитировано
0