Improving energy efficiency and fault tolerance of mission-critical cloud task scheduling: A mixed-integer linear programming approach DOI

Mohammadreza Saberikia,

Hamed Farbeh, Mahdi Fazeli

и другие.

Sustainable Computing Informatics and Systems, Год журнала: 2024, Номер unknown, С. 101068 - 101068

Опубликована: Ноя. 1, 2024

Язык: Английский

IPAQ: a multi-objective global optimal and time-aware task scheduling algorithm for fog computing environments DOI
Man Qi, Xiaochun Wu, Keke Li

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Trust-Aware Energy Optimization Techniques in Mobile Ad-hoc Networks DOI Creative Commons

Samuel Isah,

Jeffrey O. Agushaka,

Selumun Agber

и другие.

Опубликована: Март 10, 2025

This systematic review paper provides a comprehensive analysis of recent advancements in energy optimization techniques for Mobile Ad-hoc Networks (MANETs). MANETs play critical role modern communication systems, enabling dynamic and decentralized networking various applications, including disaster recovery, military operations, remote sensing. However, consumption remains significant challenge due to the limited power resources mobile nodes, directly impacting network performance lifespan. In years, such as metaheuristic algorithms, adaptive transmission control, machine learning models have shown remarkable potential addressing these challenges by enhancing efficiency prolonging lifetime. reviews current trends MANETs, trust-aware routing protocols, clustering methods, advanced mobility like Gauss-Markov model. Additionally, it detailed simulation parameters metrics used studies, highlighting their applicability limitations. The also identifies key areas future research, developing lightweight scalable integrating heterogeneous technologies, refining traffic more realistic simulations. concludes summarizing findings emphasizing importance continuous innovation strategies enhance sustainability reliability MANETs. serves valuable resource researchers practitioners, guiding development robust efficient solutions.

Язык: Английский

Процитировано

0

Integrative Cloud to Mist Computing: Architectures, Applications, and Innovations in Data Engineering DOI
Juan Emilio Zurita Macías,

Angel Almeida Arlucea

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Evaluation of Optimization Algorithm for Application Placement Problem in Fog Computing: A Systematic Review DOI
Ankur Goswami, Kirit Modi,

Chirag M. Patel

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

A Survey on Task Scheduling in Edge-Cloud DOI
Subham Sahoo, Sambit Kumar Mishra

SN Computer Science, Год журнала: 2025, Номер 6(3)

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Enhancing Smart Home Efficiency with Heuristic-Based Energy Optimization DOI Creative Commons

Yasir Khan,

Faris Kateb, Ateeq Ur Rehman

и другие.

Computers, Год журнала: 2025, Номер 14(4), С. 149 - 149

Опубликована: Апрель 16, 2025

In smart homes, heavy reliance on appliance automation has increased, along with the energy demand in developing urban areas, making efficient management an important factor. To address scheduling of appliances under Demand-Side Management, this article explores use heuristic-based optimization techniques (HOTs) homes (SHs) equipped renewable and sustainable resources (RSERs) storage systems (ESSs). The optimal model for minimization peak-to-average ratio (PAR), considering user comfort constraints, is validated by using different techniques, such as Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), Wind-Driven (WDO), Bacterial Foraging (BFO) Modified (GmPSO) algorithm, to minimize electricity costs, PAR, carbon emissions delay discomfort. This research investigates results three real-world scenarios. scenarios demonstrate benefits gradually assembling RSERs ESSs integrating them into SHs employing HOTs. simulation show substantial outcomes, scenario Condition 1, GmPSO decreased from 300 kg 69.23 kg, reducing 76.9%; bill prices were also cut unplanned value 400.00 cents 150 cents, a 62.5% reduction. PAR was unscheduled 4.5 2.2 which reduced 51.1%. 2 showed that 0.5 (unscheduled) 0.2, 60% reduction; costs 500.00 200.00 250.00 reduction GmPSO. 3, where batteries integrated, algorithm emission 158.3 208.3 24%. cost 500 GmPSO, decreasing overall 40%. achieved 57.1% 2.8 1.2.

Язык: Английский

Процитировано

0

A Hybrid Task scheduling technique in fog computing using fuzzy logic and Deep Reinforcement learning DOI Creative Commons

Prashanth Choppara,

Sudheer Mangalampalli

IEEE Access, Год журнала: 2024, Номер 12, С. 176363 - 176388

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1

Improving energy efficiency and fault tolerance of mission-critical cloud task scheduling: A mixed-integer linear programming approach DOI

Mohammadreza Saberikia,

Hamed Farbeh, Mahdi Fazeli

и другие.

Sustainable Computing Informatics and Systems, Год журнала: 2024, Номер unknown, С. 101068 - 101068

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0