Leveraging time-based acoustic patterns for ecosystem analysis DOI Creative Commons
Andrés Eduardo Castro-Ospina, Paula Andrea Rodríguez Marín, José David López

и другие.

Neural Computing and Applications, Год журнала: 2024, Номер 36(32), С. 20513 - 20526

Опубликована: Авг. 13, 2024

Abstract Passive acoustic monitoring (PAM) is an effective, non-intrusive method for studying ecosystems, but obtaining meaningful ecological information from its large number of audio files challenging. In this study, we take advantage the expected animal behavior at different times day (e.g., higher activity dawn) and develop a novel approach to use these time-based patterns. We organize PAM data into 24-hour temporal blocks formed with sound features pretrained VGGish network. These feed 1D convolutional neural network class activation mapping technique that gives interpretability outcomes. As result, diel-cycle offer more accurate robust hour-by-hour than using traditional indices as features, effectively recognizing key ecosystem

Язык: Английский

Characterization of soundscapes with acoustic indices and clustering reveals phenology patterns in a subtropical rainforest DOI
Yen‐Chun Lai,

Sheng-Shan Lu,

Ming‐Tang Shiao

и другие.

Ecological Indicators, Год журнала: 2025, Номер 171, С. 113126 - 113126

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

0

LEAVES: An open-source web-based tool for the scalable annotation and visualisation of large-scale ecoacoustic datasets using cluster analysis DOI Creative Commons
Thomas R. Napier, Euijoon Ahn, Slade Allen‐Ankins

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103026 - 103026

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Long-term biome biomonitoring DOI
Qiang Ding, Yijie Tong, Lulu Li

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 69 - 94

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Leveraging time-based acoustic patterns for ecosystem analysis DOI Creative Commons
Andrés Eduardo Castro-Ospina, Paula Andrea Rodríguez Marín, José David López

и другие.

Neural Computing and Applications, Год журнала: 2024, Номер 36(32), С. 20513 - 20526

Опубликована: Авг. 13, 2024

Abstract Passive acoustic monitoring (PAM) is an effective, non-intrusive method for studying ecosystems, but obtaining meaningful ecological information from its large number of audio files challenging. In this study, we take advantage the expected animal behavior at different times day (e.g., higher activity dawn) and develop a novel approach to use these time-based patterns. We organize PAM data into 24-hour temporal blocks formed with sound features pretrained VGGish network. These feed 1D convolutional neural network class activation mapping technique that gives interpretability outcomes. As result, diel-cycle offer more accurate robust hour-by-hour than using traditional indices as features, effectively recognizing key ecosystem

Язык: Английский

Процитировано

0