2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Год журнала: 2024, Номер unknown, С. 193 - 198
Опубликована: Окт. 21, 2024
Язык: Английский
2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Год журнала: 2024, Номер unknown, С. 193 - 198
Опубликована: Окт. 21, 2024
Язык: Английский
Опубликована: Май 30, 2024
Natural language understanding and generation have seen great progress, yet the persistent issue of hallucination undermines reliability model outputs. Introducing retrieval-augmented (RAG) with external knowledge sources, such as Wikipedia, presents a novel significant approach to enhancing factual accuracy coherence in generated content. By dynamically integrating relevant information, Mistral demonstrates substantial improvements precision, recall, overall quality responses. This research offers robust framework for mitigating hallucinations, providing valuable insights deploying reliable AI systems critical applications. The comprehensive evaluation underscores potential RAG advance performance trustworthiness large models.
Язык: Английский
Процитировано
23Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Май 10, 2024
Язык: Английский
Процитировано
6Опубликована: Май 13, 2024
Evaluating the intelligence of multimodal large language models (LLMs) using adapted human IQ tests poses unique challenges and opportunities for understanding AI capabilities.By applying Wechsler Adult Intelligence Scale (WAIS), customized to assess cognitive functions LLMs such as Baidu Benie, Google Gemini, Anthropic Claude, significant insights into complex intellectual landscape these systems were revealed.The study demonstrates that can exhibit sophisticated abilities, performing tasks requiring advanced verbal comprehension, perceptual reasoning, problemsolving-traditionally considered within purview cognition.The research also highlights distinct profiles each model, reflecting their specialized architectures training.However, acknowledges inherent limitations in human-oriented assessment, emphasizing need ongoing refinement testing methodologies keep pace with development.Future directions include creation dynamic adaptive frameworks better align capabilities evolving systems, ensuring integration societal remains aligned values safety standards.
Язык: Английский
Процитировано
6Asian Journal of Education and Social Studies, Год журнала: 2025, Номер 51(1), С. 158 - 164
Опубликована: Янв. 11, 2025
Interactive media is one of the essential elements in improving quality education. This study aims to determine effect use interactive Arabic language learning on outcomes class 2A students at Nurul Ilmi Integrated Islamic Elementary School Jambi. The approach used this quantitative with a quasi-experimental design. population was entire second grade, totalling 236 people, divided into 10 group classes. sample 20 students, who were taken randomly. data collected using test techniques (pretest and post-test) from perspective learning. analysis N-gain T-test. results showed that positively significantly affected outcomes. increase average "high" category. T-test significant. Thus, it recommended multimedia-based teaching materials be developed support implementation more professional
Язык: Английский
Процитировано
0European Public & Social Innovation Review, Год журнала: 2025, Номер 10, С. 1 - 23
Опубликована: Янв. 21, 2025
Introducción: La realidad virtual (RV) es una herramienta útil en la formación universitaria, especialmente carreras como Turismo y Hotelería (TH). Este estudio propone metodología para crear un entorno de RV espacio turístico, permitiendo a los estudiantes familiarizarse con él sin necesidad viajes presenciales. Metodología: Se desarrolla sistema adaptado al modelo pedagógico conectivista, que facilita el aprendizaje TH. integra turístico delimitado, interactuar repetidamente hasta alcanzar objetivos aprendizaje. Resultados: creación entornos permite espacios turísticos, superar barreras recursos acceder lugares condiciones preservación. Además, evaluar su medir mejora sus conocimientos. Discusión: propuesta demuestra ser efectiva simular visitas estudio, optimizando proceso educativo repetir experiencia interiorizar contenidos. Conclusiones: integración ofrece alternativa valiosa limitaciones logísticas mejorar práctico.
Процитировано
0Discover Education, Год журнала: 2025, Номер 4(1)
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
0Frontiers in Artificial Intelligence, Год журнала: 2024, Номер 7
Опубликована: Ноя. 18, 2024
This paper examines the impact of using an Artificial Intelligence (AI) teacher for current Higher Education (HE) students from three countries. The study utilized AI avatar powered by a fine-tuned Large Language Model (LLM), OIMISA, which is trained solely teaching and learning applications. provided 9-lesson course on employability transferable skills. In total 207 across institutions enrolled in programme. results demonstrate noteworthy completion rate over 47%, along with high levels engagement all student cohorts satisfaction rates students. These show potential AI-based virtual teachers countries HE compared to use MOOC platforms.
Язык: Английский
Процитировано
1Computers, materials & continua/Computers, materials & continua (Print), Год журнала: 2024, Номер 80(1), С. 1347 - 1379
Опубликована: Янв. 1, 2024
This study introduces the Orbit Weighting Scheme (OWS), a novel approach aimed at enhancing precision and efficiency of Vector Space information retrieval (IR) models, which have traditionally relied on weighting schemes like tf-idf BM25. These conventional methods often struggle with accurately capturing document relevance, leading to inefficiencies in both performance index size management. OWS proposes dynamic mechanism that evaluates significance terms based their orbital position within vector space, emphasizing term relationships distribution patterns overlooked by existing models. Our research focuses evaluating OWS's impact model accuracy using Information Retrieval metrics Recall, Precision, Interpolated Average Precision (IAP), Mean (MAP). Additionally, we assess effectiveness reducing inverted size, crucial for efficiency. We compare OWS-based models against others different schemes, including variations BM25Delta. Results reveal superiority, achieving 54% Recall 81% MAP, notable 38% reduction size. highlights potential optimizing processes underscores need further this underrepresented area fully leverage capabilities methodologies.
Язык: Английский
Процитировано
02022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Год журнала: 2024, Номер unknown, С. 193 - 198
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
0