Unveiling teleconnection drivers for heatwave prediction in South Korea using explainable artificial intelligence DOI Creative Commons
Yeonsu Lee, Dongjin Cho, Jungho Im

и другие.

npj Climate and Atmospheric Science, Год журнала: 2024, Номер 7(1)

Опубликована: Авг. 3, 2024

Abstract Increasing heatwave intensity and mortality demand timely accurate prediction. The present study focused on teleconnection, the influence of distant land ocean variability local weather events, to drive long-term predictions. complexity teleconnection poses challenges for physical-based prediction models. In this study, we employed a machine learning model explainable artificial intelligence identify drivers heatwaves in South Korea. Drivers were selected based their statistical significance with annual frequency ( | R > 0.3, p < 0.05). Our analysis revealed that two snow depth (SD) variabilities—a decrease Gobi Desert increase Tianshan Mountains—are most important predictive drivers. These exhibit high correlation summer climate conditions conducive heatwaves. lays groundwork further research into understanding land–atmosphere interactions over these SD regions significant impact patterns

Язык: Английский

Accelerating the discovery of direct bandgap doped-spinel photovoltaic materials: A target-driven approach using interpretable machine learning DOI
Chaofan Liu, Zhengxin Chen,

Chunliang Ding

и другие.

Solar Energy Materials and Solar Cells, Год журнала: 2024, Номер 271, С. 112881 - 112881

Опубликована: Апрель 25, 2024

Язык: Английский

Процитировано

4

Understanding the adsorption properties of CO2 and N2 by a typical MOF structure: Molecular dynamics and weak interaction visualization DOI
Wenchuan Liu, Jie Liu,

Lijing Ma

и другие.

Chemical Engineering Science, Год журнала: 2024, Номер 296, С. 120233 - 120233

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

4

Interpretable Machine Learning for Accelerating Reverse Design and Optimizing CO2 Methanation Catalysts with High Activity at Low Temperatures DOI
Qingchun Yang,

Runjie Bao,

Dongwen Rong

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(33), С. 14727 - 14747

Опубликована: Авг. 7, 2024

CO2 methanation represents a promising technological pathway for achieving efficient carbon dioxide resource utilization and mitigation of greenhouse gas emissions. However, the development catalysts with high activity at low temperatures (<250 °C) remains formidable challenge. To address time-consuming costly nature traditional catalyst methods, this study proposes an interpretable machine learning (ML)-assisted reverse design framework catalysts. This integrates advantages ML, interpretability analysis, multiobjective optimization methods to elucidate intricate interplay among compositions, preparation conditions, reaction parameters, activity. A data set containing 2777 points is established construct various ML models. After fine-tuning key hyperparameters four models, comprehensive comparison conducted evaluate their predictive performance. The light gradient boosting (LGBM) model demonstrates superior accuracy, attributed its minimal toot mean squared error less than 0.31 highest R2 value surpassing 0.90. An analysis ascertain most significant features impact on outputs optimal LGBM using postvalidation interpretation methods. It indicates that appropriately reducing active component content, first support calcination temperature, inert content are favorable reaction. Finally, coupled NGSA-III algorithm maximize conversion ratio CH4 selectivity in reactions. Three Ru- three Ni-based new have been successfully predicted recommended temperatures. In particular, optimized Ru–Ba/Cr2O3–SrO higher 97.04% 72.22%

Язык: Английский

Процитировано

4

Targeted metal–organic framework discovery goes digital: machine learning’s quest from algorithms to atom arrangements DOI

Maryam Chafiq,

Abdelkarim Chaouiki, Young Gun Ko

и другие.

Advanced Composites and Hybrid Materials, Год журнала: 2024, Номер 7(6)

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

4

Polarization enhanced CH4/N2 separation in bromine functionalized ZIF-62 based mixed-matrix membranes DOI
Chao Ma, Ning Li, Wenjuan Xue

и другие.

Journal of Membrane Science, Год журнала: 2023, Номер 683, С. 121829 - 121829

Опубликована: Июнь 10, 2023

Язык: Английский

Процитировано

9

Computational Simulation of CO2/CH4 Separation on a Three-Dimensional Cd-Based Metal–Organic Framework DOI

Mozhgan Parsaei,

Kamran Akhbari, Satoshi Kawata

и другие.

Crystal Growth & Design, Год журнала: 2023, Номер 23(8), С. 5705 - 5718

Опубликована: Июль 18, 2023

Natural gas purification and biogas recovery require efficient separation of CO2 from CH4, as CH4 is increasingly being recognized a promising substitute for petroleum due to its environmentally sustainable nature, abundance in natural resources, economic benefits. In the present work, 3D Cd-based metal–organic framework, [Cd2(DBrTPA)2(DMF)3] (MUT-11) 2,5-[dibromoterephthalic acid (DBrTPA) dimethyl formamide (DMF)] was synthesized using combination different synthetic methods fully characterized via several techniques. Additionally, variety organic solvents were employed perform solvent stability test. The MUT-11 structure subjected Grand Canonical Monte Carlo molecular dynamics simulations study adsorption characteristics gases both pure binary states. results acquired through simulation-based analysis revealed that dominant all pressure temperature conditions.

Язык: Английский

Процитировано

9

A Multi-Method Approach to Analyzing MOFs for Chemical Warfare Simulant Capture: Molecular Simulation, Machine Learning, and Molecular Fingerprints DOI Creative Commons

Z. H. Ming,

Min Zhang, Shouxin Zhang

и другие.

Nanomaterials, Год журнала: 2025, Номер 15(3), С. 183 - 183

Опубликована: Янв. 24, 2025

Mustard gas (HD) is a well-known chemical warfare agent, recognized for its extreme toxicity and severe hazards. Metal–organic frameworks (MOFs), with their unique structural properties, show significant potential HD adsorption applications. Due to the hazards of HD, most experimental studies focus on simulants, but molecular simulation research these simulants remains limited. Simulation analyses can uncover structure–performance relationships enable validation, optimizing methods, improving material design performance predictions. This study integrates simulations, machine learning (ML), fingerprinting (MFs) identify MOFs high simulant diethyl sulfide (DES), followed by in-depth analysis comparison. First, are categorized into Top, Middle, Bottom materials based efficiency. Univariate analysis, learning, then used compare distinguishing features fingerprints each category. helps optimal ranges Top materials, providing reference initial screening. Machine feature importance combined SHAP identifies key that significantly influence model predictions across categories, offering valuable insights future design. Molecular fingerprint reveals critical combinations, showing optimized when such as metal oxides, nitrogen-containing heterocycles, six-membered rings, C=C double bonds co-exist. The integrated using HTCS, ML, MFs provides new perspectives designing high-performance demonstrates developing CWAs simulants.

Язык: Английский

Процитировано

0

Unlocking the potential of ionic liquids in Anion-Pillared MOFs for enhanced He/H2 separation Performance: A combined computational screening and Machine learning study DOI
Yanjing He, Shitong Zhang, Chongli Zhong

и другие.

Separation and Purification Technology, Год журнала: 2025, Номер unknown, С. 132253 - 132253

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Interpretable machine learning on C3H6 and C3H8 diffusion in covalent organic frameworks: Incorporating the effects of framework flexibility DOI

Rongyu Pan,

Xuemin Tu,

Xue Ma

и другие.

Chemical Engineering Science, Год журнала: 2025, Номер unknown, С. 121520 - 121520

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Transforming machine learning model knowledge into material insights for multi-principal-element superalloy phase design DOI Creative Commons
Qiuling Tao, Xintong Yang,

Longke Bao

и другие.

npj Computational Materials, Год журнала: 2025, Номер 11(1)

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

0