Improved Artificial Bee Colony Using Sine-Cosine Algorithm for Multi-Level Thresholding Image Segmentation DOI Creative Commons
Ahmed A. Ewees, Mohamed Abd Elaziz, Mohammed A. A. Al‐qaness

и другие.

IEEE Access, Год журнала: 2020, Номер 8, С. 26304 - 26315

Опубликована: Янв. 1, 2020

Multilevel-thresholding is an efficient method used in image segmentation. This paper presents a hybrid meta-heuristic approach for multi-level thresholding segmentation by integrating both the artificial bee colony (ABC) algorithm and sine-cosine (SCA). The proposed algorithm, called ABCSCA, applied to segment images it utilizes Otsu's function as objective function. ABCSCA uses ABC optimize threshold reduce search region. Thereafter, SCA output of determine global optimal solution, which represents values. To evaluate performance set experimental series performed using nineteen images. In first series, assessed at low levels compared with traditional methods. Moreover, second aims high six algorithms addition ABC. Besides, evaluated fuzzy entropy. results demonstrate effectiveness showed that outperforms other terms measures, such Peak Signal-to-Noise Ratio (PSNR) Structural Similarity Index (SSIM).

Язык: Английский

Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches DOI
Muhammad Naveed, Muhammad Nouman Aslam Khan, Muhammad Mukarram

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2023, Номер 189, С. 113906 - 113906

Опубликована: Ноя. 4, 2023

Язык: Английский

Процитировано

48

The Differentiated Creative Search (DCS): Leveraging differentiated knowledge-acquisition and creative realism to address complex optimization problems DOI
Poomin Duankhan, Khamron Sunat, Sirapat Chiewchanwattana

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 252, С. 123734 - 123734

Опубликована: Март 22, 2024

Язык: Английский

Процитировано

28

A comprehensive study on modern optimization techniques for engineering applications DOI Creative Commons
Shitharth Selvarajan

Artificial Intelligence Review, Год журнала: 2024, Номер 57(8)

Опубликована: Июль 4, 2024

Abstract Rapid industrialization has fueled the need for effective optimization solutions, which led to widespread use of meta-heuristic algorithms. Among repertoire over 600, 300 new methodologies have been developed in last ten years. This increase highlights a sophisticated grasp these novel methods. The biological and natural phenomena inform strategies seen paradigm shift recent observed trend indicates an increasing acknowledgement effectiveness bio-inspired tackling intricate engineering problems, providing solutions that exhibit rapid convergence rates unmatched fitness scores. study thoroughly examines latest advancements optimisation techniques. work investigates each method’s unique characteristics, properties, operational paradigms determine how revolutionary approaches could be problem-solving paradigms. Additionally, extensive comparative analyses against conventional benchmarks, such as metrics search history, trajectory plots, functions, are conducted elucidate superiority approaches. Our findings demonstrate potential optimizers provide directions future research refine expand upon intriguing methodologies. survey lighthouse, guiding scientists towards innovative rooted various mechanisms.

Язык: Английский

Процитировано

25

Antlion-Facing Ant Colony Optimization in Parameter Identification of the MR Damper as a Semi-active Control Device DOI
Salar Farahmand‐Tabar, Sina Shirgir

Springer tracts in nature-inspired computing, Год журнала: 2024, Номер unknown, С. 147 - 169

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

20

Opposed Pheromone Ant Colony Optimization for Property Identification of Nonlinear Structures DOI
Salar Farahmand‐Tabar, Sina Shirgir

Springer tracts in nature-inspired computing, Год журнала: 2024, Номер unknown, С. 77 - 95

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

20

Metaheuristic Optimization Algorithms: an overview DOI Creative Commons
Brahim Benaissa, Masakazu Kobayashi, Musaddiq Al Ali

и другие.

Deleted Journal, Год журнала: 2024, Номер unknown

Опубликована: Фев. 5, 2024

Metaheuristic optimization algorithms are known for their versatility and adaptability, making them effective tools solving a wide range of complex problems. They don't rely on specific problem types, gradients, can explore globally while handling multi-objective optimization. strike balance between exploration exploitation, contributing to advancements in However, it's important note limitations, including the lack guaranteed global optimum, varying convergence rates, somewhat opaque functioning. In contrast, metaphor-based algorithms, intuitively appealing, have faced controversy due potential oversimplification unrealistic expectations. Despite these considerations, metaheuristic continue be widely used tackling This research paper aims fundamental components concepts that underlie focusing use search references delicate exploitation. Visual representations behavior selected will also provided.

Язык: Английский

Процитировано

19

Assessing the forest ecosystem’s vulnerability to human and natural variables in the UNESCO Global Geopark Dak Nong, Vietnam, using the combined ACO-ANFIS model DOI
Anh Ngoc Thi

Tropical Ecology, Год журнала: 2025, Номер unknown

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

3

A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer DOI
Sinan Q. Salih, AbdulRahman A. Alsewari

Neural Computing and Applications, Год журнала: 2019, Номер 32(14), С. 10359 - 10386

Опубликована: Окт. 28, 2019

Язык: Английский

Процитировано

130

A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things DOI
Behrouz Pourghebleh, Vahideh Hayyolalam

Cluster Computing, Год журнала: 2019, Номер 23(2), С. 641 - 661

Опубликована: Июнь 11, 2019

Язык: Английский

Процитировано

129

Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature DOI
Absalom E. Ezugwu, Amit K. Shukla, Moyinoluwa B. Agbaje

и другие.

Neural Computing and Applications, Год журнала: 2020, Номер 33(11), С. 6247 - 6306

Опубликована: Окт. 10, 2020

Язык: Английский

Процитировано

126