Bald eagle search algorithm: a comprehensive review with its variants and applications DOI Creative Commons
M.A. El‐Shorbagy, Anas Bouaouda, Hossam A. Nabwey

и другие.

Systems Science & Control Engineering, Год журнала: 2024, Номер 12(1)

Опубликована: Авг. 1, 2024

Bald Eagle Search (BES) is a recent and highly successful swarm-based metaheuristic algorithm inspired by the hunting strategy of bald eagles in capturing prey. With its remarkable ability to balance global local searches during optimization, BES effectively addresses various optimization challenges across diverse domains, yielding nearly optimal results. This paper offers comprehensive review research on BES. Beginning with an introduction BES's natural inspiration conceptual framework, it explores modifications, hybridizations, applications domains. Then, critical evaluation performance provided, offering update effectiveness compared recently published algorithms. Furthermore, presents meta-analysis developments outlines potential future directions. As swarm-inspired algorithms become increasingly important tackling complex problems, this study valuable resource for researchers aiming understand algorithms, mainly focusing comprehensively. It investigates evolution, exploring solving intricate fields.

Язык: Английский

Beluga whale optimization: A novel nature-inspired metaheuristic algorithm DOI
Changting Zhong, Gang Li, Zeng Meng

и другие.

Knowledge-Based Systems, Год журнала: 2022, Номер 251, С. 109215 - 109215

Опубликована: Июнь 9, 2022

Язык: Английский

Процитировано

538

A survey on river water quality modelling using artificial intelligence models: 2000–2020 DOI
Tiyasha Tiyasha, Tran Minh Tung, Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

и другие.

Journal of Hydrology, Год журнала: 2020, Номер 585, С. 124670 - 124670

Опубликована: Фев. 14, 2020

Язык: Английский

Процитировано

537

Political Optimizer: A novel socio-inspired meta-heuristic for global optimization DOI
Qamar Askari, Irfan Younas,

Mehreen Saeed

и другие.

Knowledge-Based Systems, Год журнала: 2020, Номер 195, С. 105709 - 105709

Опубликована: Март 8, 2020

Язык: Английский

Процитировано

473

Heap-based optimizer inspired by corporate rank hierarchy for global optimization DOI
Qamar Askari,

Mehreen Saeed,

Irfan Younas

и другие.

Expert Systems with Applications, Год журнала: 2020, Номер 161, С. 113702 - 113702

Опубликована: Июль 18, 2020

Язык: Английский

Процитировано

317

An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions DOI
Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Chemosphere, Год журнала: 2021, Номер 277, С. 130126 - 130126

Опубликована: Март 19, 2021

Язык: Английский

Процитировано

268

An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges DOI Open Access
Kanchan Rajwar, Kusum Deep, Swagatam Das

и другие.

Artificial Intelligence Review, Год журнала: 2023, Номер 56(11), С. 13187 - 13257

Опубликована: Апрель 9, 2023

Язык: Английский

Процитировано

254

Metaheuristics: a comprehensive overview and classification along with bibliometric analysis DOI
Absalom E. Ezugwu, Amit K. Shukla, Rahul Nath

и другие.

Artificial Intelligence Review, Год журнала: 2021, Номер 54(6), С. 4237 - 4316

Опубликована: Март 16, 2021

Язык: Английский

Процитировано

227

Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems DOI
Mohamed Abdel‐Basset, Doaa El-Shahat, Mohammed Jameel

и другие.

Artificial Intelligence Review, Год журнала: 2023, Номер 56(9), С. 9329 - 9400

Опубликована: Янв. 30, 2023

Язык: Английский

Процитировано

124

Young’s double-slit experiment optimizer : A novel metaheuristic optimization algorithm for global and constraint optimization problems DOI
Mohamed Abdel‐Basset, Doaa El-Shahat, Mohammed Jameel

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 403, С. 115652 - 115652

Опубликована: Ноя. 4, 2022

Язык: Английский

Процитировано

120

A survey of recently developed metaheuristics and their comparative analysis DOI Creative Commons
Abdulaziz Alorf

Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 117, С. 105622 - 105622

Опубликована: Ноя. 25, 2022

The aim of this study was to gather, discuss, and compare recently developed metaheuristics understand the pace development in field make some recommendations for research community practitioners. By thoroughly comprehensively searching literature narrowing search results, we created with a list 57 novel metaheuristic algorithms. Based on availability source code, reviewed analysed optimization capability 26 these algorithms through series experiments. We also evaluated exploitation exploration capabilities by using 50 unimodal functions multimodal functions, respectively. In addition, assessed balance 29 shifted, rotated, composite, hybrid CEC-BC-2017 benchmark functions. Moreover, applicability four real-world constrained engineering problems. To rank algorithms, performed nonparametric statistical test, Friedman mean test. results declared that GBO, PO, MRFO have better capabilities. found MPA, FBI, HBO be most balanced. Finally, based problems, HBO, MA are suitable. Collectively, confidently recommend

Язык: Английский

Процитировано

74