European Radiology, Год журнала: 2023, Номер 33(9), С. 6608 - 6618
Опубликована: Апрель 4, 2023
Язык: Английский
European Radiology, Год журнала: 2023, Номер 33(9), С. 6608 - 6618
Опубликована: Апрель 4, 2023
Язык: Английский
Seminars in Nuclear Medicine, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Lung cancer remains one of the most prevalent cancers globally and leading cause cancer-related deaths, accounting for nearly one-fifth all fatalities. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([18F]FDG PET/CT) plays a vital role in assessing lung managing disease progression. While traditional PET/CT imaging relies on qualitative analysis basic quantitative parameters, radiomics offers more advanced approach to analyzing tumor phenotypes. Recently, has gained attention its potential enhance prognostic diagnostic capabilities [18F]FDG various cancers. This review explores expanding PET/CT-based radiomics, particularly when integrated with artificial intelligence (AI), cancer, especially non-small cell (NSCLC). We how AI improve diagnostics, staging, subtype identification, molecular marker detection, which influence treatment decisions. Additionally, we address challenges clinical integration, such as protocol standardization, feature reproducibility, need extensive prospective studies. Ultimately, hold great promise enabling personalized effective treatments, potentially transforming management.
Язык: Английский
Процитировано
5Seminars in Nuclear Medicine, Год журнала: 2022, Номер 52(6), С. 759 - 780
Опубликована: Июнь 15, 2022
Lung cancer is the second most common and leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed ([18F]FDG-PET/CT) plays an essential role in diagnosis, evaluation response to treatment, prediction outcomes. The images are evaluated qualitative conventional quantitative indices. However, there far more information embedded images, which can be extracted by sophisticated algorithms. Recently, concept uncovering analyzing invisible data from medical called radiomics, gaining attention. Currently, [18F]FDG-PET/CT radiomics growingly lung discover if it enhances diagnostic performance or implication management cancer. In this review, we provide a short overview technical aspects, as they discussed different articles special issue. We mainly focus on [18F]FDG-PET/CT‐based artificial intelligence non-small cell cancer, impacting early detection, staging, tumor subtypes, biomarkers, patient's
Язык: Английский
Процитировано
56European Radiology, Год журнала: 2022, Номер 32(6), С. 4079 - 4089
Опубликована: Янв. 20, 2022
Язык: Английский
Процитировано
45Seminars in Nuclear Medicine, Год журнала: 2025, Номер 55(2), С. 190 - 201
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Seminars in Cancer Biology, Год журнала: 2023, Номер 91, С. 124 - 142
Опубликована: Март 10, 2023
Язык: Английский
Процитировано
19European Radiology, Год журнала: 2023, Номер 33(7), С. 5069 - 5076
Опубликована: Апрель 26, 2023
Язык: Английский
Процитировано
18European Radiology, Год журнала: 2023, Номер 33(12), С. 8858 - 8868
Опубликована: Июнь 30, 2023
Язык: Английский
Процитировано
17Magnetic Resonance Imaging, Год журнала: 2020, Номер 77, С. 36 - 43
Опубликована: Ноя. 18, 2020
Язык: Английский
Процитировано
42European Journal of Nuclear Medicine and Molecular Imaging, Год журнала: 2022, Номер 49(8), С. 2972 - 2982
Опубликована: Апрель 26, 2022
Язык: Английский
Процитировано
27Abdominal Radiology, Год журнала: 2022, Номер 47(4), С. 1244 - 1254
Опубликована: Фев. 26, 2022
Язык: Английский
Процитировано
24