
Knowledge-Based Systems, Год журнала: 2022, Номер 250, С. 109081 - 109081
Опубликована: Май 23, 2022
Язык: Английский
Knowledge-Based Systems, Год журнала: 2022, Номер 250, С. 109081 - 109081
Опубликована: Май 23, 2022
Язык: Английский
Expert Systems with Applications, Год журнала: 2022, Номер 195, С. 116516 - 116516
Опубликована: Янв. 15, 2022
Язык: Английский
Процитировано
565Knowledge-Based Systems, Год журнала: 2023, Номер 268, С. 110454 - 110454
Опубликована: Март 11, 2023
Язык: Английский
Процитировано
270Advances in Engineering Software, Год журнала: 2022, Номер 174, С. 103282 - 103282
Опубликована: Окт. 29, 2022
Язык: Английский
Процитировано
266Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 114, С. 105139 - 105139
Опубликована: Июль 6, 2022
Язык: Английский
Процитировано
170Knowledge-Based Systems, Год журнала: 2022, Номер 260, С. 110146 - 110146
Опубликована: Ноя. 29, 2022
Язык: Английский
Процитировано
169Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 403, С. 115652 - 115652
Опубликована: Ноя. 4, 2022
Язык: Английский
Процитировано
113Computers, Год журнала: 2021, Номер 10(11), С. 136 - 136
Опубликована: Окт. 25, 2021
Advancements in medical technology have created numerous large datasets including many features. Usually, all captured features are not necessary, and there redundant irrelevant features, which reduce the performance of algorithms. To tackle this challenge, metaheuristic algorithms used to select effective However, most them scalable enough from as well small ones. Therefore, paper, a binary moth-flame optimization (B-MFO) is proposed datasets. Three categories B-MFO were developed using S-shaped, V-shaped, U-shaped transfer functions convert canonical MFO continuous binary. These evaluated on seven results compared with four well-known algorithms: BPSO, bGWO, BDA, BSSA. In addition, convergence behavior comparative assessed, statistically analyzed Friedman test. The experimental demonstrate superior solving feature selection problem for different other
Язык: Английский
Процитировано
107Knowledge-Based Systems, Год журнала: 2023, Номер 271, С. 110554 - 110554
Опубликована: Апрель 10, 2023
Язык: Английский
Процитировано
85Swarm and Evolutionary Computation, Год журнала: 2023, Номер 79, С. 101304 - 101304
Опубликована: Март 26, 2023
Язык: Английский
Процитировано
67Scientific Reports, Год журнала: 2023, Номер 13(1)
Опубликована: Март 30, 2023
Abstract A novel bio-inspired meta-heuristic algorithm, namely the American zebra optimization algorithm (AZOA), which mimics social behaviour of zebras in wild, is proposed this study. are distinguished from other mammals by their distinct and fascinating character leadership exercise, navies baby to leave herd before maturity join a separate with no family ties. This departure encourages diversification preventing intra-family mating. Moreover, convergence assured exercise zebras, directs speed direction group. lifestyle indigenous nature main inspiration for proposing AZOA algorithm. To examine efficiency CEC-2005, CEC-2017, CEC-2019 benchmark functions considered, compared several state-of-the-art algorithms. The experimental outcomes statistical analysis reveal that capable attaining optimal solutions maximum while maintaining good balance between exploration exploitation. Furthermore, numerous real-world engineering problems have been employed demonstrate robustness AZOA. Finally, it anticipated will accomplish domineeringly forthcoming advanced CEC complex problems.
Язык: Английский
Процитировано
60