Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2025, Номер 436, С. 117699 - 117699
Опубликована: Янв. 14, 2025
Язык: Английский
Процитировано
13International Journal of Heat and Mass Transfer, Год журнала: 2024, Номер 235, С. 126149 - 126149
Опубликована: Сен. 7, 2024
Язык: Английский
Процитировано
13Artificial Intelligence Review, Год журнала: 2024, Номер 57(8)
Опубликована: Июль 5, 2024
Abstract Significant uncertainties can be found in the modelling of geotechnical materials. This attributed to complex behaviour soils and rocks amidst construction processes. Over past decades, field has increasingly embraced application artificial intelligence methodologies, thus recognising their suitability forecasting non-linear relationships intrinsic review offers a critical evaluation AI methodologies incorporated computational mechanics for engineering. The analysis categorises four pivotal areas: physical properties, mechanical constitutive models, other characteristics relevant Among various analysed, ANNs stand out as most commonly used strategy, while methods such SVMs, LSTMs, CNNs also see significant level application. widely algorithms are Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machines (SVM), representing 35%, 19%, 17% respectively. extensive is domain accounting 59%, followed by applications at 16%. efficacy intrinsically linked type datasets employed, selected model input. study outlines future research directions emphasising need integrate physically guided adaptive learning mechanisms enhance reliability adaptability addressing multi-scale multi-physics coupled problems geotechnics.
Язык: Английский
Процитировано
11Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 425, С. 116940 - 116940
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
3International Journal for Numerical Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 9, 2024
ABSTRACT To obtain fast solutions for governing physical equations in solid mechanics, we introduce a method that integrates the core ideas of finite element with physics‐informed neural networks and concept operators. We propose directly utilizing available discretized weak form packages to construct loss functions algebraically, thereby demonstrating ability find even presence sharp discontinuities. Our focus is on micromechanics as an example, where knowledge deformation stress fields given heterogeneous microstructure crucial further design applications. The primary parameter under investigation Young's modulus distribution within system. investigations reveal physics‐based training yields higher accuracy compared purely data‐driven approaches unseen microstructures. Additionally, offer two methods improve process obtaining high‐resolution solutions, avoiding need use basic interpolation techniques. first one based autoencoder approach enhance efficiency calculation high resolution grid points. Next, Fourier‐based parametrization utilized address complex 2D 3D problems micromechanics. latter idea aims represent microstructures efficiently using Fourier coefficients. proposed draws from deep energy but generalizes enhances them by learning parametric without relying external data. Compared other operator frameworks, it leverages domain decomposition several ways: (1) uses shape derivatives instead automatic differentiation; (2) automatically includes node connectivity, making solver flexible approximating jumps solution fields; (3) can handle arbitrary shapes enforce boundary conditions. provided some initial comparisons well‐known algorithms, emphasize advantages newly method.
Язык: Английский
Процитировано
3Mechanics Based Design of Structures and Machines, Год журнала: 2025, Номер unknown, С. 1 - 13
Опубликована: Янв. 24, 2025
Язык: Английский
Процитировано
0Computer Methods in Applied Mechanics and Engineering, Год журнала: 2025, Номер 437, С. 117793 - 117793
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Acta Mechanica, Год журнала: 2025, Номер unknown
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
0Computational Mechanics, Год журнала: 2025, Номер unknown
Опубликована: Март 7, 2025
Язык: Английский
Процитировано
0Structural and Multidisciplinary Optimization, Год журнала: 2025, Номер 68(3)
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0