Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation DOI
Hao Gao, Qingke Zhang

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109202 - 109202

Опубликована: Авг. 30, 2024

Язык: Английский

Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion DOI
Mohamed Abdel‐Basset, Reda Mohamed,

Shaimaa A. Abdel Azeem

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 268, С. 110454 - 110454

Опубликована: Март 11, 2023

Язык: Английский

Процитировано

270

Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization DOI
Gang Hu,

Yuxuan Guo,

Guo Wei

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 58, С. 102210 - 102210

Опубликована: Окт. 1, 2023

Язык: Английский

Процитировано

159

Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems DOI Creative Commons
Youfa Fu, Dan Liu, Jiadui Chen

и другие.

Artificial Intelligence Review, Год журнала: 2024, Номер 57(5)

Опубликована: Апрель 23, 2024

Abstract This study introduces a novel population-based metaheuristic algorithm called secretary bird optimization (SBOA), inspired by the survival behavior of birds in their natural environment. Survival for involves continuous hunting prey and evading pursuit from predators. information is crucial proposing new that utilizes abilities to address real-world problems. The algorithm's exploration phase simulates snakes, while exploitation models escape During this phase, observe environment choose most suitable way reach secure refuge. These two phases are iteratively repeated, subject termination criteria, find optimal solution problem. To validate performance SBOA, experiments were conducted assess convergence speed, behavior, other relevant aspects. Furthermore, we compared SBOA with 15 advanced algorithms using CEC-2017 CEC-2022 benchmark suites. All test results consistently demonstrated outstanding terms quality, stability. Lastly, was employed tackle 12 constrained engineering design problems perform three-dimensional path planning Unmanned Aerial Vehicles. demonstrate that, contrasted optimizers, proposed can better solutions at faster pace, showcasing its significant potential addressing

Язык: Английский

Процитировано

76

Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems DOI
Weiguo Zhao, Liying Wang, Zhenxing Zhang

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 417, С. 116446 - 116446

Опубликована: Сен. 28, 2023

Язык: Английский

Процитировано

72

Particle guided metaheuristic algorithm for global optimization and feature selection problems DOI
Benjamin Danso Kwakye, Yongjun Li, Halima Habuba Mohamed

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123362 - 123362

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

35

MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications DOI
Yaning Xiao, Hao Cui, Abdelazim G. Hussien

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 61, С. 102464 - 102464

Опубликована: Март 15, 2024

Язык: Английский

Процитировано

31

Differential evolution algorithms with novel mutations, adaptive parameters, and Weibull flight operator DOI
Abdesslem Layeb

Soft Computing, Год журнала: 2024, Номер 28(11-12), С. 7039 - 7091

Опубликована: Янв. 20, 2024

Язык: Английский

Процитировано

17

Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies DOI
Shengwei Fu, Haisong Huang, Chi Ma

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 233, С. 120904 - 120904

Опубликована: Июнь 29, 2023

Язык: Английский

Процитировано

34

Enhanced marine predator algorithm for global optimization and engineering design problems DOI
Salih Berkan Aydemı̇r

Advances in Engineering Software, Год журнала: 2023, Номер 184, С. 103517 - 103517

Опубликована: Июнь 28, 2023

Язык: Английский

Процитировано

28

Advances in Henry Gas Solubility Optimization: A Physics-Inspired Metaheuristic Algorithm With Its Variants and Applications DOI Creative Commons
M.A. El‐Shorbagy, Anas Bouaouda, Hossam A. Nabwey

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 26062 - 26095

Опубликована: Янв. 1, 2024

The Henry Gas Solubility Optimization (HGSO) is a physics-based metaheuristic inspired by Henry's law, which describes the solubility of gas in liquid under specific pressure conditions. Since its introduction Hashim et al. 2019, HGSO has gained significant attention for unique features, including minimal adaptive parameters and balanced exploration-exploitation trade-off, leading to favorable convergence. This study provides an up-to-date survey HGSO, covering walk through historical development modifications, hybridizations with other algorithms, showcasing adaptability potential synergy. Recent variants are categorized into modified, hybridized, multi-objective versions, review explores main applications, demonstrating effectiveness solving complex problems. evaluation includes discussion algorithm's strengths weaknesses. comprehensive review, featuring graphical tabular comparisons, not only indicates future directions field but also serves as valuable resource researchers seeking deep understanding advanced versions. As algorithms gain prominence intricate optimization problems, this insights applications across diverse domains.

Язык: Английский

Процитировано

11