Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109202 - 109202
Опубликована: Авг. 30, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109202 - 109202
Опубликована: Авг. 30, 2024
Язык: Английский
Knowledge-Based Systems, Год журнала: 2023, Номер 268, С. 110454 - 110454
Опубликована: Март 11, 2023
Язык: Английский
Процитировано
270Advanced Engineering Informatics, Год журнала: 2023, Номер 58, С. 102210 - 102210
Опубликована: Окт. 1, 2023
Язык: Английский
Процитировано
159Artificial Intelligence Review, Год журнала: 2024, Номер 57(5)
Опубликована: Апрель 23, 2024
Abstract This study introduces a novel population-based metaheuristic algorithm called secretary bird optimization (SBOA), inspired by the survival behavior of birds in their natural environment. Survival for involves continuous hunting prey and evading pursuit from predators. information is crucial proposing new that utilizes abilities to address real-world problems. The algorithm's exploration phase simulates snakes, while exploitation models escape During this phase, observe environment choose most suitable way reach secure refuge. These two phases are iteratively repeated, subject termination criteria, find optimal solution problem. To validate performance SBOA, experiments were conducted assess convergence speed, behavior, other relevant aspects. Furthermore, we compared SBOA with 15 advanced algorithms using CEC-2017 CEC-2022 benchmark suites. All test results consistently demonstrated outstanding terms quality, stability. Lastly, was employed tackle 12 constrained engineering design problems perform three-dimensional path planning Unmanned Aerial Vehicles. demonstrate that, contrasted optimizers, proposed can better solutions at faster pace, showcasing its significant potential addressing
Язык: Английский
Процитировано
76Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 417, С. 116446 - 116446
Опубликована: Сен. 28, 2023
Язык: Английский
Процитировано
72Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123362 - 123362
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
35Advanced Engineering Informatics, Год журнала: 2024, Номер 61, С. 102464 - 102464
Опубликована: Март 15, 2024
Язык: Английский
Процитировано
31Soft Computing, Год журнала: 2024, Номер 28(11-12), С. 7039 - 7091
Опубликована: Янв. 20, 2024
Язык: Английский
Процитировано
17Expert Systems with Applications, Год журнала: 2023, Номер 233, С. 120904 - 120904
Опубликована: Июнь 29, 2023
Язык: Английский
Процитировано
34Advances in Engineering Software, Год журнала: 2023, Номер 184, С. 103517 - 103517
Опубликована: Июнь 28, 2023
Язык: Английский
Процитировано
28IEEE Access, Год журнала: 2024, Номер 12, С. 26062 - 26095
Опубликована: Янв. 1, 2024
The Henry Gas Solubility Optimization (HGSO) is a physics-based metaheuristic inspired by Henry's law, which describes the solubility of gas in liquid under specific pressure conditions. Since its introduction Hashim et al. 2019, HGSO has gained significant attention for unique features, including minimal adaptive parameters and balanced exploration-exploitation trade-off, leading to favorable convergence. This study provides an up-to-date survey HGSO, covering walk through historical development modifications, hybridizations with other algorithms, showcasing adaptability potential synergy. Recent variants are categorized into modified, hybridized, multi-objective versions, review explores main applications, demonstrating effectiveness solving complex problems. evaluation includes discussion algorithm's strengths weaknesses. comprehensive review, featuring graphical tabular comparisons, not only indicates future directions field but also serves as valuable resource researchers seeking deep understanding advanced versions. As algorithms gain prominence intricate optimization problems, this insights applications across diverse domains.
Язык: Английский
Процитировано
11