Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)
Опубликована: Янв. 25, 2024
Язык: Английский
Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)
Опубликована: Янв. 25, 2024
Язык: Английский
Soil Dynamics and Earthquake Engineering, Год журнала: 2022, Номер 165, С. 107662 - 107662
Опубликована: Ноя. 30, 2022
Язык: Английский
Процитировано
91International Journal of Electrical Power & Energy Systems, Год журнала: 2023, Номер 155, С. 109579 - 109579
Опубликована: Окт. 26, 2023
The significance of accurate short-term load forecasting (STLF) for modern power systems' efficient and secure operation is paramount. This task intricate due to cyclicity, non-stationarity, seasonality, nonlinear consumption time series data characteristics. rise accessibility in the industry has paved way machine learning (ML) models, which show potential enhance STLF accuracy. paper presents a novel hybrid ML model combining Gradient Boosting Regressor (GBR), Extreme (XGBoost), k-Nearest Neighbors (kNN), Support Vector Regression (SVR), examining both standalone integrated, coupled with signal decomposition techniques like STL, EMD, EEMD, CEEMDAN, EWT. Through Automated Machine Learning (AutoML), these models are integrated their hyperparameters optimized, predicting each component using from two sources: National Operator Electric System (ONS) Independent Operators New England (ISO-NE), boosting prediction capacity. For 2019 ONS dataset, EWT XGBoost yielded best results very (VSTLF) an RMSE 1,931.8 MW, MAE 1,564.9 MAPE 2.54%. These findings highlight necessity diverse approaches VSTLF problem, emphasizing adaptability strength combined techniques.
Язык: Английский
Процитировано
90Acta Geotechnica, Год журнала: 2023, Номер 18(6), С. 3403 - 3419
Опубликована: Янв. 2, 2023
Язык: Английский
Процитировано
69Rock Mechanics and Rock Engineering, Год журнала: 2023, Номер 56(12), С. 8745 - 8770
Опубликована: Сен. 2, 2023
Язык: Английский
Процитировано
59Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141035 - 141035
Опубликована: Фев. 8, 2024
Язык: Английский
Процитировано
41Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655
Опубликована: Май 5, 2024
Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.
Язык: Английский
Процитировано
22Computers and Geotechnics, Год журнала: 2024, Номер 167, С. 106051 - 106051
Опубликована: Янв. 8, 2024
Язык: Английский
Процитировано
21Renewable Energy, Год журнала: 2024, Номер 235, С. 121311 - 121311
Опубликована: Сен. 7, 2024
Язык: Английский
Процитировано
11Polymers, Год журнала: 2025, Номер 17(4), С. 499 - 499
Опубликована: Фев. 14, 2025
The increasing complexity of polymer systems in both experimental and computational studies has led to an expanding interest machine learning (ML) methods aid data analysis, material design, predictive modeling. Among the various ML approaches, boosting methods, including AdaBoost, Gradient Boosting, XGBoost, CatBoost LightGBM, have emerged as powerful tools for tackling high-dimensional complex problems science. This paper provides overview applications science, highlighting their contributions areas such structure-property relationships, synthesis, performance prediction, characterization. By examining recent case on techniques this review aims highlight potential advancing characterization, optimization materials.
Язык: Английский
Процитировано
2Agronomy, Год журнала: 2025, Номер 15(3), С. 533 - 533
Опубликована: Фев. 22, 2025
The estimation of soil organic matter (SOM) content is essential for understanding the chemical, physical, and biological functions soil. It also an important attribute reflecting quality black In this study, machine learning algorithms support vector (SVM), neural network (NN), decision tree (DT), random forest (RF), extreme gradient boosting (GBM), generalized linear model (GLM) were used to study accurate prediction SOM in Tieling County, City, Liaoning Province, China. models trained by using 1554 surface samples 19 auxiliary variables. Recursive feature elimination was as a selection method identify effective results showed that Normalized Difference Vegetation Index (NDVI) elevation key Based on 10-fold cross-validation, RF had highest accuracy. terms accuracy, coefficient determination 0.77, root mean square error 2.85. average 20.15 g/kg. spatial distribution shows higher concentrated east west, while lower found middle. cultivated land than land.
Язык: Английский
Процитировано
1