Winds of Power: Data Analysis for the Relationship between Wind Speed, Gust, and Power Output DOI Creative Commons
Samah A. Gamel,

Yara A. Sultan

Journal of Engineering Research - Egypt/Journal of Engineering Research, Год журнала: 2023, Номер 7(5), С. 189 - 194

Опубликована: Ноя. 1, 2023

Wind turbines are the most cost-effective and quickly evolving renewable energy technology. Benefits of this technology include no carbon emissions, resource conservation, job creation, flexible applications, modularity, fast installation, rural power grid improvement, potential for agricultural or industrial use.

Язык: Английский

Enhancing crop recommendation systems with explainable artificial intelligence: a study on agricultural decision-making DOI Creative Commons
Mahmoud Y. Shams, Samah A. Gamel, Fatma M. Talaat

и другие.

Neural Computing and Applications, Год журнала: 2024, Номер 36(11), С. 5695 - 5714

Опубликована: Янв. 11, 2024

Abstract Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical performance, and prevailing weather patterns, provide personalized recommendations. In response the growing demand transparency interpretability agricultural decision-making, this study introduces XAI-CROP an innovative algorithm that harnesses eXplainable artificial intelligence (XAI) principles. The fundamental objective is empower farmers with comprehensible insights into recommendation process, surpassing opaque nature conventional machine learning models. rigorously compares prominent models, Gradient Boosting (GB), Decision Tree (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), Multimodal (MNB). Performance evaluation employs three essential metrics: Mean Squared Error (MSE), Absolute (MAE), R-squared (R2). empirical results unequivocally establish superior performance XAI-CROP. It achieves impressively low MSE 0.9412, indicating highly accurate yield predictions. Moreover, MAE 0.9874, consistently maintains errors below critical threshold 1, reinforcing its reliability. robust R 2 value 0.94152 underscores XAI-CROP's ability explain 94.15% data's variability, highlighting explanatory power.

Язык: Английский

Процитировано

35

Exploring the effects of pandemics on transportation through correlations and deep learning techniques DOI Creative Commons
Samah A. Gamel, Esraa Hassan, Nora El-Rashidy

и другие.

Multimedia Tools and Applications, Год журнала: 2023, Номер 83(3), С. 7295 - 7316

Опубликована: Июнь 7, 2023

The COVID-19 pandemic has had a significant impact on human migration worldwide, affecting transportation patterns in cities. Many cities have issued "stay-at-home" orders during the outbreak, causing commuters to change their usual modes of transportation. For example, some transit/bus passengers switched driving or car-sharing. As result, urban traffic congestion changed dramatically, and understanding these changes is crucial for effective emergency management control efforts. While previous studies focused natural disasters major accidents, only few examined pandemic-related patterns. This paper uses correlations machine learning techniques analyze relationship between authors simulated models five different networks proposed Traffic Prediction Technique (TPT), which includes an Impact Calculation Methodology that Pearson's Correlation Coefficient Linear Regression, as well Module (TPM). paper's main contribution introduction TPM, Convolutional Neural Network predict results indicate strong correlation spread patterns, CNN high accuracy rate predicting impacts.

Язык: Английский

Процитировано

29

Toward interpretable credit scoring: integrating explainable artificial intelligence with deep learning for credit card default prediction DOI
Fatma M. Talaat,

Abdussalam Aljadani,

Mahmoud Badawy

и другие.

Neural Computing and Applications, Год журнала: 2023, Номер 36(9), С. 4847 - 4865

Опубликована: Дек. 21, 2023

Язык: Английский

Процитировано

28

A machine-learning approach for stress detection using wearable sensors in free-living environments DOI

Mohamed Abd Al-Alim,

Roaa I. Mubarak, Nancy M. Salem

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 179, С. 108918 - 108918

Опубликована: Июль 18, 2024

Язык: Английский

Процитировано

8

Utilizing social media and machine learning for personality and emotion recognition using PERS DOI
Fatma M. Talaat, Eman M. El-Gendy, Mahmoud M. Saafan

и другие.

Neural Computing and Applications, Год журнала: 2023, Номер 35(33), С. 23927 - 23941

Опубликована: Сен. 5, 2023

Язык: Английский

Процитировано

15

HCNNet: a hybrid convolutional neural network for abnormal human driver behaviour detection DOI
Tina Debbarma, Tannistha Pal, Ashim Saha

и другие.

Sadhana, Год журнала: 2025, Номер 50(1)

Опубликована: Янв. 25, 2025

Язык: Английский

Процитировано

0

A deep learning approach to analyse stress by using voice and body posture DOI
Sumita Gupta, Sapna Gambhir,

Mohit Gambhir

и другие.

Soft Computing, Год журнала: 2025, Номер unknown

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

0

Learning-based estimation of operators’ psycho-physiological state DOI Creative Commons

Lisa Piccinin,

Jessica Leoni, Eugenia Villa

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127097 - 127097

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Enhancing the efficiency of lung cancer screening: predictive models utilizing deep learning from CT scans DOI
Medhat A. Tawfeek, Ibrahim Alrashdi, Madallah Alruwaili

и другие.

Neural Computing and Applications, Год журнала: 2025, Номер unknown

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

0

CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease DOI Creative Commons
Fatma M. Talaat,

Ahmed R. Elnaggar,

Warda M. Shaban

и другие.

Bioengineering, Год журнала: 2024, Номер 11(8), С. 822 - 822

Опубликована: Авг. 12, 2024

The global prevalence of cardiovascular diseases (CVDs) as a leading cause death highlights the imperative need for refined risk assessment and prognostication methods. traditional approaches, including Framingham Risk Score, blood tests, imaging techniques, clinical assessments, although widely utilized, are hindered by limitations such lack precision, reliance on static variables, inability to adapt new patient data, thereby necessitating exploration alternative strategies. In response, this study introduces CardioRiskNet, hybrid AI-based model designed transcend these limitations. proposed CardioRiskNet consists seven parts: data preprocessing, feature selection encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, prediction prognosis, evaluation validation, deployment integration. At first, preprocessed cleaning handling missing values, applying normalization process, extracting features. Next, most informative features selected categorical variables converted into numerical form. Distinctively, employs learning iteratively select samples, enhancing its efficacy, while mechanism dynamically focuses relevant precise prediction. Additionally, integration XAI facilitates interpretability transparency in decision-making processes. According experimental results, demonstrates superior performance terms accuracy, sensitivity, specificity, F1-Score, with values 98.7%, 99%, respectively. These findings show that can accurately assess prognosticate CVD risk, demonstrating power surpass conventional Thus, CardioRiskNet's novel approach high advance management CVDs provide healthcare professionals powerful tool care.

Язык: Английский

Процитировано

3