Advanced generative adversarial network for optimizing layout of wireless sensor networks DOI Creative Commons
Sumit Kumar,

Setu Garg,

Eatedal Alabdulkreem

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Дек. 30, 2024

The best layout design related to the sensor node distribution represents one among major research questions in Wireless Sensor Networks (WSNs). It has a direct impact on WSNs' cost, detection capabilities, and monitoring quality. optimization of several conflicting objectives, including as load balancing, coverage, lifetime, connection, energy consumption nodes, is necessary for optimization. Layout an NP-hard combinatorial issue. A number meta-heuristic strategies have been put out address this issue past ten years. Nevertheless, these methods only addressed subset objectives-combinations consumption, count area lifetime-or they offered computationally costly solutions. Therefore, paper presents problem using novel intelligent deep learning-based methodology. Here, objective cover numerous objectives associated with optimal layouts homogeneous WSNs that involves connectivity, nodes. handled by Advanced Generative Adversarial Network (AGAN), where parameter tuning performed nature inspired algorithm called Piranha Foraging Optimization Algorithm (PFOA), consideration deriving function. Simulation findings revealed proposed AGAN-PFOA generated Pareto front non-dominated solutions having better hyper-volumes well spread than state-of-the-art WSN terms PDR, alive count, delay, routing overhead 61.46%, 15.12%, 12.67%, 65.91%, 70.59%, 44.88%, 68.86% existing respectively.

Язык: Английский

A novel evolutionary status guided hyper-heuristic algorithm for continuous optimization DOI
Rui Zhong, Jun Yu

Cluster Computing, Год журнала: 2024, Номер unknown

Опубликована: Июнь 8, 2024

Язык: Английский

Процитировано

9

Success History Adaptive Competitive Swarm Optimizer with Linear Population Reduction: Performance benchmarking and application in eye disease detection DOI
Rui Zhong, Zhongmin Wang, Abdelazim G. Hussien

и другие.

Computers in Biology and Medicine, Год журнала: 2025, Номер 186, С. 109587 - 109587

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

0

Under Complex Wind Scenarios: Considering Large-scale Wind Turbines in Wind Farm Layout Optimization via Self-adaptive Optimal Fractional-order Guided Differential Evolution DOI
Yu-Jun Zhang, Zihang Zhang, Rui Zhong

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135866 - 135866

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

HHDE: a hyper-heuristic differential evolution with novel boundary repair technique for complex optimization DOI
Rui Zhong, Shilong Zhang, Jun Yu

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(5)

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

Optimized Double-Stage Fractional Order Controllers for DFIG-Based Wind Energy Systems: A Comparative Study DOI Creative Commons
Mohammed Dahane, Abdelkrim Benali, Hamza Tédjini

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104584 - 104584

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework DOI
Rui Zhong, Yuefeng Xu, Chengqi Zhang

и другие.

Cluster Computing, Год журнала: 2024, Номер 27(10), С. 13835 - 13869

Опубликована: Июль 6, 2024

Язык: Английский

Процитировано

3

Parameters estimation of complex solar photovoltaic models using bi-parameter coordinated updating L-SHADE with parameter decomposition method DOI Creative Commons
Xiaoyun Yang, Gang Zeng,

Zan Cao

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 61, С. 104917 - 104917

Опубликована: Авг. 3, 2024

Accurate estimation of unknown parameters complex photovoltaic models is crucial to whether generators can efficiently convert energy. When a model has multiple diode branches, its complexity increases geometrically. To address the problems high and difficulty in estimation, this paper proposes an effective improved algorithm based on success-history adaptation differential evolution with linear population size reduction (L-SHADE)—Bi-parameter coordinated updating L-SHADE parameter decomposition method (CSpL-SHADED). First CSpL-SHADED, dynamic crossover rate ranking technology developed bridge relationship between individuals rates, thereby improving mutation capabilities. In addition, sub-population mechanism also proposed divide entire into sub-populations so that they are evenly distributed search space, ability local areas improved. Secondly, solar different effectively decomposed nonlinear by method. The accurately estimated calculated constructed matrix equation. Through experiments four complexity, CSpL-SHADED showed strong competitiveness varying degrees compared comparative algorithms.

Язык: Английский

Процитировано

3

Cooperative coati optimization algorithm with transfer functions for feature selection and knapsack problems DOI
Rui Zhong, Chao Zhang, Jun Yu

и другие.

Knowledge and Information Systems, Год журнала: 2024, Номер 66(11), С. 6933 - 6974

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

1

Hybrid Arctic Puffin Algorithm for Solving Design Optimization Problems DOI Creative Commons
Hussam N. Fakhouri,

Mohannad S. Alkhalaileh,

Faten Hamad

и другие.

Algorithms, Год журнала: 2024, Номер 17(12), С. 589 - 589

Опубликована: Дек. 20, 2024

This study presents an innovative hybrid evolutionary algorithm that combines the Arctic Puffin Optimization (APO) with JADE dynamic differential evolution framework. The APO algorithm, inspired by foraging patterns of puffins, demonstrates certain challenges, including a tendency to converge prematurely at local minima, slow rate convergence, and insufficient equilibrium between exploration exploitation processes. To mitigate these drawbacks, proposed approach incorporates features JADE, which enhances exploration–exploitation trade-off through adaptive parameter control use external archive. By synergizing effective search mechanisms modeled after behavior puffins JADE’s advanced strategies, this integration significantly improves global efficiency accelerates convergence process. effectiveness APO-JADE is demonstrated benchmark tests against well-known IEEE CEC 2022 unimodal multimodal functions, showing superior performance over 32 compared optimization algorithms. Additionally, applied complex engineering design problems, structures mechanisms, revealing its practical utility in navigating challenging, multi-dimensional spaces typically encountered real-world problems. results confirm outperformed all optimizers, effectively addressing challenges unknown areas optimization.

Язык: Английский

Процитировано

1

Gene-targeting multiplayer battle game optimizer for large-scale global optimization via cooperative coevolution DOI
Rui Zhong, Jun Yu

Cluster Computing, Год журнала: 2024, Номер unknown

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

0