Journal of the Geological Society of India, Год журнала: 2024, Номер 100(10), С. 1477 - 1492
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of the Geological Society of India, Год журнала: 2024, Номер 100(10), С. 1477 - 1492
Опубликована: Окт. 1, 2024
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(34), С. 82964 - 82989
Опубликована: Июнь 19, 2023
Язык: Английский
Процитировано
24Engineering Applications of Computational Fluid Mechanics, Год журнала: 2024, Номер 18(1)
Опубликована: Янв. 7, 2024
This research aims to forecast, using various criteria, the flow of soil erosion that will occur at a particular geographical location. As for training dataset, 80% dataset from sample sites, four hybrid algorithms, namely heap-based optimizer (HBO), political (PO), teaching-learning based optimization (TLBO), and backtracking search algorithm (BSA) combined with artificial neural network (ANN) was used create an susceptibility model establishes unique original approach. After it confirmed be successful, algorithms were applied map this area, demonstrating integrity results. The AUC values computed every optimisation in study. optimal estimated accuracy indices populations 450 determined 0.9846 BSA-MLP databases. maximum value HBO-MLP databases different swarm sizes 0.9736. A size 350–300 is considered forecasting mapping models. With same constraints, TLBO-MLP scenario 0.996. 150 conditions train PO-MLP model, 0.9845. According these findings, worked best 50 150, respectively.
Язык: Английский
Процитировано
11Landslides, Год журнала: 2025, Номер unknown
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 19, 2025
Abstract A new metaheuristic optimizer combined with artificial neural networks is proposed for streamflow prediction. Hence, the study aimed to forecast monthly of main rivers in Urmia, Iran, by considering data shortage and using network (ANN) models. By combining three variables: temperature, precipitation, streamflow, we formulated five patterns, where 70% were used model training, 30% testing. To improve performance ANN, evaluated a optimization algorithm, reptile search algorithm (RSA), compared results combinations particle swarm (PSO), whale (WOA) The ANN + RSA promising at most stations patterns. At Band station simulation testing gave RMSE, MAE, NSE 1.65, 1.21 MCM/month, 0.80, respectively. Babaroud they 4.01, 3.0 MCM/month 0.68, respectively, Nazlo 5.62, 3.79 0.69, Tapik 5.69, 3.82 0.59, However, PSO hybrid better than RSA. impact different parameters on accuracy prediction varied depending station, indicating that models do not perform consistently across locations, times, conditions. inclusion lagged was an influential input parameter. demonstrated improved predictions, enhancing traditional algorithms. findings this highlight advantage specific areas, suggesting its potential application other similar hydrological problems further validation.
Язык: Английский
Процитировано
1Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown
Опубликована: Март 21, 2024
Язык: Английский
Процитировано
7Water Resources Management, Год журнала: 2023, Номер 38(2), С. 553 - 567
Опубликована: Дек. 5, 2023
Язык: Английский
Процитировано
14Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2024, Номер 134, С. 103563 - 103563
Опубликована: Янв. 28, 2024
Язык: Английский
Процитировано
6Ecological Engineering, Год журнала: 2024, Номер 208, С. 107372 - 107372
Опубликована: Авг. 20, 2024
Язык: Английский
Процитировано
6Natural Hazards, Год журнала: 2024, Номер 120(13), С. 12043 - 12079
Опубликована: Май 25, 2024
Язык: Английский
Процитировано
5Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(59), С. 123527 - 123555
Опубликована: Ноя. 21, 2023
Язык: Английский
Процитировано
10