Development of MCS based-ensemble models using CEEMDAN decomposition and machine intelligence DOI Creative Commons
Sandip Garai, Ranjit Kumar Paul

Intelligent Systems with Applications, Год журнала: 2023, Номер 18, С. 200202 - 200202

Опубликована: Фев. 15, 2023

In this paper, stock price data has been predicted using several state-of-the-art methodologies such as stochastic models, machine learning techniqus, and deep algorithms. An efficient decomposition method resonating with these Machine Intelligence (MI) models embedded boosting ensemble method. Finally a Model Confidence Set (MCS) based algorithm proposed for forecasting data. Complete Ensemble Empirical Mode Decomposition Adaptive Noise (CEEMDAN) decomposed orthogonal subseries have Random Forests (RFs). Then Kernel Ridge Regression (KRR) model is used to combine those predictions form hybrid predictor. addition, improvement in prediction performance observed kernel functions. Boosting (AdaBoost) found stimulating accuracy of Long Short-Term Memory (LSTM) Gated Recurrent Unit (GRU) models. CEEMDAN also increased the AdaBoost. Nevertheless, combination forecasts from various good approach improving result. Despite optimizing weights all heuristic MCS-based snuffing least important prior averaging conceded potent approach. MCS rescinds insignificant on out-of-sample or in-sample equally average superior The compared existing standalone techniques validation measures. However, Support Vector (CCEMDAN_SVR) be best predictor current scenario.

Язык: Английский

Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion DOI
Mohamed Abdel‐Basset, Reda Mohamed,

Shaimaa A. Abdel Azeem

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 268, С. 110454 - 110454

Опубликована: Март 11, 2023

Язык: Английский

Процитировано

297

Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study DOI
Mohammad H. Nadimi-Shahraki, Hoda Zamani, Seyedali Mirjalili

и другие.

Computers in Biology and Medicine, Год журнала: 2022, Номер 148, С. 105858 - 105858

Опубликована: Июль 16, 2022

Язык: Английский

Процитировано

215

Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism DOI
Xiangbing Zhou,

Hongjiang Ma,

Jianggang Gu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 114, С. 105139 - 105139

Опубликована: Июль 6, 2022

Язык: Английский

Процитировано

177

Young’s double-slit experiment optimizer : A novel metaheuristic optimization algorithm for global and constraint optimization problems DOI
Mohamed Abdel‐Basset, Doaa El-Shahat, Mohammed Jameel

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 403, С. 115652 - 115652

Опубликована: Ноя. 4, 2022

Язык: Английский

Процитировано

120

Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications DOI Open Access
Farhad Soleimanian Gharehchopogh, Alaettin Uçan, Turgay İbrikçi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2683 - 2723

Опубликована: Янв. 12, 2023

Язык: Английский

Процитировано

111

American zebra optimization algorithm for global optimization problems DOI Creative Commons

Sarada Mohapatra,

Prabhujit Mohapatra

Scientific Reports, Год журнала: 2023, Номер 13(1)

Опубликована: Март 30, 2023

Abstract A novel bio-inspired meta-heuristic algorithm, namely the American zebra optimization algorithm (AZOA), which mimics social behaviour of zebras in wild, is proposed this study. are distinguished from other mammals by their distinct and fascinating character leadership exercise, navies baby to leave herd before maturity join a separate with no family ties. This departure encourages diversification preventing intra-family mating. Moreover, convergence assured exercise zebras, directs speed direction group. lifestyle indigenous nature main inspiration for proposing AZOA algorithm. To examine efficiency CEC-2005, CEC-2017, CEC-2019 benchmark functions considered, compared several state-of-the-art algorithms. The experimental outcomes statistical analysis reveal that capable attaining optimal solutions maximum while maintaining good balance between exploration exploitation. Furthermore, numerous real-world engineering problems have been employed demonstrate robustness AZOA. Finally, it anticipated will accomplish domineeringly forthcoming advanced CEC complex problems.

Язык: Английский

Процитировано

70

An improved gorilla troops optimizer for global optimization problems and feature selection DOI
Reham R. Mostafa,

Marwa A. Gaheen,

Mohamed Abd Elaziz

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 269, С. 110462 - 110462

Опубликована: Март 23, 2023

Язык: Английский

Процитировано

62

Coronavirus Mask Protection Algorithm: A New Bio-inspired Optimization Algorithm and Its Applications DOI Open Access
Yongliang Yuan,

Qianlong Shen,

Shuo Wang

и другие.

Journal of Bionic Engineering, Год журнала: 2023, Номер 20(4), С. 1747 - 1765

Опубликована: Март 1, 2023

Язык: Английский

Процитировано

59

Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy DOI

Ramkumar Devendiran,

Anil V. Turukmane

Expert Systems with Applications, Год журнала: 2024, Номер 245, С. 123027 - 123027

Опубликована: Янв. 11, 2024

Язык: Английский

Процитировано

38

A comprehensive and systematic literature review on intrusion detection systems in the internet of medical things: current status, challenges, and opportunities DOI Creative Commons
Arezou Naghib,

Farhad Soleimanian Gharehchopogh,

Azadeh Zamanifar

и другие.

Artificial Intelligence Review, Год журнала: 2025, Номер 58(4)

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

7