Transforming waste management: leveraging recycletransformernet for effective recycling strategies DOI
Arundhuti Devi, Arumugam Saravanan,

R. Reeta

и другие.

Clean Technologies and Environmental Policy, Год журнала: 2025, Номер unknown

Опубликована: Апрель 23, 2025

Язык: Английский

Industrialized fine physical regeneration process and economic benefit assessment for recycling waste HDPE containers DOI
Lipeng Dong, Zhe Huang,

Yufei Qin

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 447, С. 141477 - 141477

Опубликована: Март 4, 2024

Язык: Английский

Процитировано

5

Transforming waste into innovation: a review of plastic bricks as sustainable construction materials DOI Creative Commons
Kundan Yadav,

Abhinandan Singh,

Ovais Nazir Bhat

и другие.

Deleted Journal, Год журнала: 2024, Номер 1(1)

Опубликована: Июль 30, 2024

Abstract Plastic waste has become a pressing global issue, posing significant environmental challenges. As the construction industry continues to grow, there is growing need for sustainable materials that can address this problem. This review paper focuses on transformation of into innovation by exploring use plastic bricks as materials. The examines manufacturing processes, properties, benefits, challenges, case studies, and future research directions associated with bricks. It highlights potential reduce waste, carbon emissions, resource consumption. Additionally, addresses challenges related structural integrity, long-term durability, regulatory compliance, public perception. Case studies showcase successful implementations in projects, emphasizing their innovative design possibilities, cost-effectiveness, economic feasibility, notable strength. These illustrate achieve necessary strength applications, making them viable alternative traditional also discusses impact circular economy perspectives bricks, highlighting recyclability, reusability, management implications, contribution initiatives. Finally, concludes recommendations, focusing advancements techniques, enhanced performance engineering monitoring assessment. comprehensive sheds light transformative provides insights addressing

Язык: Английский

Процитировано

5

Contributions of artificial intelligence for circular economy transition leading toward sustainability: an explorative study in agriculture and food industries of Pakistan DOI
Zain Anwar Ali,

Mahreen Zain,

Muhammad Salman Pathan

и другие.

Environment Development and Sustainability, Год журнала: 2023, Номер 26(8), С. 19131 - 19175

Опубликована: Июнь 14, 2023

Язык: Английский

Процитировано

13

Investigation on co-disposal technology of sludge and municipal solid waste based on numerical simulation DOI
Tao Lin, Yanfen Liao, Tonghua Dai

и другие.

Fuel, Год журнала: 2023, Номер 343, С. 127882 - 127882

Опубликована: Март 4, 2023

Язык: Английский

Процитировано

12

Circular Economy Advances with Artificial Intelligence and Digital Twin: Multiple-Case Study of Chinese Industries in Agriculture DOI
Zain Anwar Ali,

Mahreen Zain,

Raza Hasan

и другие.

Journal of the Knowledge Economy, Год журнала: 2024, Номер unknown

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

4

Leveraging Machine Learning for Advancing Circular Supply Chains: A Systematic Literature Review DOI Creative Commons
Zeinab Farshadfar, Tomasz Mucha, Kari Tanskanen

и другие.

Logistics, Год журнала: 2024, Номер 8(4), С. 108 - 108

Опубликована: Окт. 21, 2024

Background: Circular supply chains (CSCs) aim to minimize waste, extend product lifecycles, and optimize resource efficiency, aligning with the growing demand for sustainable practices. Machine learning (ML) can potentially enhance CSCs by improving management, optimizing processes, addressing complexities inherent in CSCs. ML be a powerful tool support CSC operations offering data-driven insights enhancing decision-making capabilities. Methods: This paper conducts systematic literature review, analyzing 66 relevant studies examine role of across various stages CSCs, from manufacturing waste management. Results: The findings reveal that contributes significantly performance, supplier selection, operational optimization, reduction. ML-driven approaches manufacturing, consumer behavior forecasting, logistics, management enable companies resources waste. Integrating emerging technologies such as IoT, blockchain, computer vision further enhances operations, fostering transparency automation. Conclusions: applications align broader sustainability goals, contributing environmental, social, economic sustainability. review identifies opportunities future research, development real-world case effects on efficiency.

Язык: Английский

Процитировано

4

Green Technologies DOI
Otmane Azeroual

IGI Global eBooks, Год журнала: 2025, Номер unknown, С. 1 - 26

Опубликована: Фев. 7, 2025

Climate change and the rapid depletion of natural resources present significant global challenges that demand innovative sustainable solutions. Traditional resource management approaches are increasingly inadequate in addressing these complexities, creating a pressing need for advanced technologies. Artificial Intelligence (AI) Data Science have emerged as powerful tools to revolutionize green technologies, enhancing their efficiency effectiveness promoting sustainability. This chapter provides comprehensive exploration applications AI discussing potential impacts, challenges, ethical considerations. By examining aspects, aims illuminate how technologies can be harnessed address environmental support future.

Язык: Английский

Процитировано

0

Optimizing waste management with integrated AIoT, edge computing, and LoRaWAN communication technologies DOI

Abdelaziz Daas,

Bilal Sari, Fouzi Semchedine

и другие.

Internet of Things, Год журнала: 2025, Номер unknown, С. 101546 - 101546

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A systematic review of PET circularity technologies and management strategies: Challenges and future directions DOI Creative Commons

Jiwon Han,

Jian Zuo,

George Zillante

и другие.

Resources Conservation and Recycling, Год журнала: 2025, Номер 219, С. 108280 - 108280

Опубликована: Апрель 6, 2025

Язык: Английский

Процитировано

0

Machine learning: a better means for metal waste to reprocess DOI
Aya Nabil Sayed, Md. Mosarrof Hossen, Tamim M. Al-Hasan

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 213 - 235

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0