Studies in computational intelligence, Год журнала: 2024, Номер unknown, С. 248 - 260
Опубликована: Янв. 1, 2024
Язык: Английский
Studies in computational intelligence, Год журнала: 2024, Номер unknown, С. 248 - 260
Опубликована: Янв. 1, 2024
Язык: Английский
Information Sciences, Год журнала: 2023, Номер 628, С. 177 - 195
Опубликована: Янв. 20, 2023
Язык: Английский
Процитировано
48Information Processing & Management, Год журнала: 2024, Номер 61(5), С. 103775 - 103775
Опубликована: Май 17, 2024
Язык: Английский
Процитировано
17Expert Systems with Applications, Год журнала: 2023, Номер 228, С. 120326 - 120326
Опубликована: Май 6, 2023
Язык: Английский
Процитировано
23Expert Systems with Applications, Год журнала: 2023, Номер 231, С. 120603 - 120603
Опубликована: Июнь 9, 2023
Язык: Английский
Процитировано
15Scientific Reports, Год журнала: 2023, Номер 13(1)
Опубликована: Фев. 23, 2023
Abstract The identification of important nodes is a hot topic in complex networks. Many methods have been proposed different fields for solving this problem. Most previous work emphasized the role single feature and, as result, rarely made full use multiple items. This paper proposes new method that utilizes characteristics evaluation their importance. First, an extended degree defined to improve classical degree. And E-shell hierarchy decomposition put forward determining nodes’ position through network’s hierarchical structure. Then, based on combination these two components, hybrid characteristic centrality and its version are evaluating importance nodes. Extensive experiments conducted six real networks, susceptible–infected–recovered model monotonicity criterion introduced test performance approach. comparison results demonstrate approach exposes more competitive advantages both accuracy resolution compared other five approaches.
Язык: Английский
Процитировано
14Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122171 - 122171
Опубликована: Окт. 18, 2023
Язык: Английский
Процитировано
14Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Апрель 11, 2024
The complex networks exhibit significant heterogeneity in node connections, resulting a few nodes playing critical roles various scenarios, including decision-making, disease control, and population immunity. Therefore, accurately identifying these influential that play crucial is very important. Many methods have been proposed different fields to solve this issue. This paper focuses on the types of disassortativity existing innovatively introduces concept node, namely, inconsistency between degree degrees its neighboring nodes, proposes measure (DoN) by step function. Furthermore, analyzes indicates many real-world network applications, such as online social networks, influence within often associated with community boundary structure network. Thus, metric based (mDC) proposed. Extensive experiments are conducted synthetic real performance DoN mDC validated through robustness immune experiment infection. Experimental analytical results demonstrate compared other state-of-the-art centrality measures, (DoN mDC) exhibits superior identification efficiency, particularly non-disassortative clear structures. we find high stability noise inaccuracies data.
Язык: Английский
Процитировано
6PLoS ONE, Год журнала: 2022, Номер 17(8), С. e0273610 - e0273610
Опубликована: Авг. 29, 2022
Quantifying a node's importance is decisive for developing efficient strategies to curb or accelerate any spreading phenomena. Centrality measures are well-known methods used quantify the influence of nodes by extracting information from network's structure. The pitfall these pinpoint located in vicinity each other, saturating their shared zone influence. In this paper, we propose ranking strategy exploiting ubiquity community structure real-world networks. proposed community-aware naturally selects set distant spreaders with most significant One can use it centrality measure. We investigate its effectiveness using and synthetic networks controlled parameters Susceptible-Infected-Recovered (SIR) diffusion model scenario. Experimental results indicate superiority over all counterparts agnostic about Additionally, show that performs better strong high number communities heterogeneous sizes.
Язык: Английский
Процитировано
22Applied Network Science, Год журнала: 2023, Номер 8(1)
Опубликована: Май 22, 2023
Abstract
The
A
rtificial
B
enchmark
for
C
ommunity
D
etection
graph
(
ABCD
)
is
a
random
model
with
community
structure
and
power-law
distribution
both
degrees
sizes.
generates
graphs
similar
properties
as
the
well-known
LFR
one,
its
main
parameter
$$\xi$$
Язык: Английский
Процитировано
12Chaos Solitons & Fractals, Год журнала: 2022, Номер 164, С. 112627 - 112627
Опубликована: Сен. 15, 2022
Язык: Английский
Процитировано
17