BMR and BWR: Two Simple Metaphor-Free Optimization Algorithms for Solving Constrained and Unconstrained Problems DOI
R. Venkata Rao,

Ravikumar Shah

Опубликована: Июль 22, 2024

This paper presents two simple yet powerful optimization algorithms named Best-Mean-Random (BMR) and Best-Worst-Randam (BWR) to handle both constrained unconstrained problems. These are free of metaphors algorithm-specific parameters. The BMR algorithm is based on the best, mean, random solutions population generated for solving a given problem; BWR worst, solutions. performances proposed investigated 12 engineering problems results compared with very recent (in some cases more than 30 algorithms). Furthermore, computational experiments conducted standard benchmark including 5 recently developed having distinct characteristics. proved better competitiveness superiority algorithms. research community may gain an advantage by adapting these solve various real-life across scientific disciplines.

Язык: Английский

FSM-YOLO: Apple leaf disease detection network based on adaptive feature capture and spatial context awareness DOI
Chunman Yan,

Kangyi Yang

Digital Signal Processing, Год журнала: 2024, Номер 155, С. 104770 - 104770

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

3

Incorporating adaptive local search and experience-based perturbed learning into artificial rabbits optimizer for improved DC motor speed regulation DOI Creative Commons
Rizk M. Rizk‐Allah, Davut İzci, Serdar Ekinci

и другие.

International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 162, С. 110266 - 110266

Опубликована: Окт. 19, 2024

Язык: Английский

Процитировано

3

Draco lizard optimizer: a novel metaheuristic algorithm for global optimization problems DOI
Xiaowei Wang

Evolutionary Intelligence, Год журнала: 2024, Номер 18(1)

Опубликована: Ноя. 20, 2024

Язык: Английский

Процитировано

3

A Deep Reinforcement Learning Approach towards Distributed Function as a Service (FaaS) based Edge Application Orchestration in Cloud-Edge Continuum DOI

Mina Emami Khansari,

Saeed Sharifian

Journal of Network and Computer Applications, Год журнала: 2024, Номер 233, С. 104042 - 104042

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

2

BMR and BWR: Two Simple Metaphor-Free Optimization Algorithms for Solving Constrained and Unconstrained Problems DOI
R. Venkata Rao,

Ravikumar Shah

Опубликована: Июль 22, 2024

This paper presents two simple yet powerful optimization algorithms named Best-Mean-Random (BMR) and Best-Worst-Randam (BWR) to handle both constrained unconstrained problems. These are free of metaphors algorithm-specific parameters. The BMR algorithm is based on the best, mean, random solutions population generated for solving a given problem; BWR worst, solutions. performances proposed investigated 12 engineering problems results compared with very recent (in some cases more than 30 algorithms). Furthermore, computational experiments conducted standard benchmark including 5 recently developed having distinct characteristics. proved better competitiveness superiority algorithms. research community may gain an advantage by adapting these solve various real-life across scientific disciplines.

Язык: Английский

Процитировано

1