Water Air & Soil Pollution, Год журнала: 2024, Номер 235(7)
Опубликована: Июнь 26, 2024
Язык: Английский
Water Air & Soil Pollution, Год журнала: 2024, Номер 235(7)
Опубликована: Июнь 26, 2024
Язык: Английский
Urban Climate, Год журнала: 2023, Номер 51, С. 101655 - 101655
Опубликована: Авг. 23, 2023
Язык: Английский
Процитировано
56Water Air & Soil Pollution, Год журнала: 2024, Номер 235(1)
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
26Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Март 21, 2024
Abstract Industrial advancements and utilization of large amount fossil fuels, vehicle pollution, other calamities increases the Air Quality Index (AQI) major cities in a drastic manner. Major AQI analysis is essential so that government can take proper preventive, proactive measures to reduce air pollution. This research incorporates artificial intelligence prediction based on pollution data. An optimized machine learning model which combines Grey Wolf Optimization (GWO) with Decision Tree (DT) algorithm for accurate India. quality data available Kaggle repository used experimentation, like Delhi, Hyderabad, Kolkata, Bangalore, Visakhapatnam, Chennai are considered analysis. The proposed performance experimentally verified through metrics R-Square, RMSE, MSE, MAE, accuracy. Existing models, k-nearest Neighbor, Random Forest regressor, Support vector compared model. attains better traditional algorithms maximum accuracy 88.98% New Delhi city, 91.49% Bangalore 94.48% 97.66% 95.22% 97.68% Visakhapatnam city.
Язык: Английский
Процитировано
26Journal of Cleaner Production, Год журнала: 2024, Номер 449, С. 141770 - 141770
Опубликована: Март 12, 2024
Язык: Английский
Процитировано
8Environmental Pollution, Год журнала: 2024, Номер 355, С. 124199 - 124199
Опубликована: Май 22, 2024
Язык: Английский
Процитировано
8Urban Climate, Год журнала: 2024, Номер 53, С. 101826 - 101826
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
7Aerosol Science and Engineering, Год журнала: 2025, Номер unknown
Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
1Water Air & Soil Pollution, Год журнала: 2023, Номер 234(8)
Опубликована: Июль 21, 2023
Язык: Английский
Процитировано
16Atmospheric Pollution Research, Год журнала: 2024, Номер 15(4), С. 102061 - 102061
Опубликована: Янв. 25, 2024
Язык: Английский
Процитировано
6Atmosphere, Год журнала: 2024, Номер 15(4), С. 418 - 418
Опубликована: Март 27, 2024
Forecasting air quality plays a crucial role in preventing and controlling pollution. It is particularly significant for improving preparedness heavily polluted weather conditions ensuring the health safety of population. In this study, novel deep learning model predicting spatio-temporal variations introduced. The model, named graph long short-term memory with multi-head attention (GLSTMMA), designed to capture temporal patterns spatial relationships within multivariate time series data related quality. GLSTMMA utilizes hybrid neural network architecture effectively learn complex dependencies correlations present data. extraction features involves utilization convolutional (GCN) collect based on geographical distribution monitoring sites. resulting structure imported into (LSTM) establish Graph LSTM unit, facilitating Leveraging an encoder-multiple-attention decoder framework formulated enable more profound efficient exploration correlation research 2019–2021 multi-source dataset Qinghai Province experimental assessment. results indicate that leverages impact data, optimal accuracy six pollutants.
Язык: Английский
Процитировано
5