Coupling coordination analysis and spatiotemporal heterogeneity between urban land green use efficiency and ecosystem services in Yangtze River Economic Belt, China DOI Creative Commons
Fengtai Zhang, Aiyu Xie, Caixia Jiang

и другие.

Humanities and Social Sciences Communications, Год журнала: 2024, Номер 11(1)

Опубликована: Окт. 3, 2024

Язык: Английский

The nonlinear influence of land conveyance on urban carbon emissions: An interpretable ensemble learning-based approach DOI
Renlu Qiao,

Zhiqiang Wu,

Qingrui Jiang

и другие.

Land Use Policy, Год журнала: 2024, Номер 140, С. 107117 - 107117

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

19

Spatio-temporal pattern evolution of carbon emissions at the city-county-town scale in Fujian Province based on DMSP/OLS and NPP/VIIRS nighttime light data DOI
Yuanmao Zheng,

Menglin Fan,

Yaling Cai

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 442, С. 140958 - 140958

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

16

Regional disparities and evolution trend of city-level carbon emission intensity in China DOI
Nan Ke,

Xinhai Lu,

Bing Kuang

и другие.

Sustainable Cities and Society, Год журнала: 2022, Номер 88, С. 104288 - 104288

Опубликована: Ноя. 3, 2022

Язык: Английский

Процитировано

50

The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China DOI Creative Commons
Jingbo Liu, Haoyuan Feng, Kun Wang

и другие.

Land, Год журнала: 2022, Номер 11(5), С. 604 - 604

Опубликована: Апрель 20, 2022

Against the backdrop of severe global warming, low-carbon city pilot policy, with carbon emission reduction as its main objective, is an important initiative for China to fulfil international commitment and promote a green development strategy. However, none literature has yet evaluated whether policy promotes urban land use efficiency effect. In view this, this paper measures from perspective using reference super-efficiency SBM model based on data 186 prefecture-level cities in 2005–2017, subsequently constructs difference-in-differences method test true impact policies emissions, uses propensity score matching robustness. It found that: (1) average level low downward trend; (2) overall, are predominantly low-efficiency cities, only high-efficiency Guangdong Province showing spatial agglomeration; (3) reduces emissions while also negatively affecting efficiency. Accordingly, puts forward corresponding recommendations.

Язык: Английский

Процитировано

44

How does green finance affect carbon emission intensity? The role of green technology innovation and internet development DOI Creative Commons
Qiufeng Zhang, Huan Huang, Liang Chen

и другие.

International Review of Economics & Finance, Год журнала: 2025, Номер unknown, С. 103995 - 103995

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function DOI Creative Commons
Han Chen, Chunyu Meng, Qilin Cao

и другие.

Land, Год журнала: 2022, Номер 11(7), С. 1052 - 1052

Опубликована: Июль 11, 2022

The development and use of urban land is a major source carbon emissions. How to reduce emissions in the process without harming economy has become an extremely important issue. This paper integrating into efficiency evaluation index system, measures low-carbon using non-radial directional distance function analyses its spatial temporal evolution influencing factors combination kernel density estimation method Tobit model. study found that: (1) China’s shows fluctuating tends converge; (2) there much room for reducing input China, 2016 alone, sample could be reduced by 10.38% 5.31%, respectively; (3) at national level, finance, economic level population have positive impact on efficiency, while traffic negative effects, these effects show regional heterogeneity. Accordingly, proposes corresponding policy recommendations.

Язык: Английский

Процитировано

30

Utilizing green finance to promote low-carbon transition of Chinese cities: insights from technological innovation and industrial structure adjustment DOI Creative Commons
Xiaoqing Wu, Hong‐xing Wen, Pu‐yan Nie

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Июль 22, 2024

Green finance (GF) has emerged as a promising tool to promote low-carbon development, while knowledge is rather limited regarding the underlying mechanism. This article aims address this void by constructing city-level GF index covering seven dimensions and identifying main pathways through which can facilitate development of cities. Using balanced panel data 277 Chinese cities from 2010 2020, results show that: (1) China's exhibits an overall spatial differentiation 'high in east low west', distribution carbon intensity (CI) displays north south'; (2) significantly decreases CI cities, robust employing DID strategies IV estimations; (3) The role on varies with level whereas not GF. Specifically, mitigating effect significant both high groups, but only group; (4) promotes transition mainly adjusting industrial structure than stimulating technological innovation. Despite we also demonstrate green enhances innovation, due multi-factors, such technology progress it brings may always translate into tangible improvement productivity. For most developing countries including China, future policy objective should focus enhancing sustainable progress.

Язык: Английский

Процитировано

7

Spatial effects of green innovation and carbon emission reduction in China: Mediating role of infrastructure and informatization DOI
Qiufeng Zhang, Junfeng Li,

Qingshen Kong

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 106, С. 105426 - 105426

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

6

A novel full-resolution convolutional neural network for urban-fringe-rural identification: A case study of urban agglomeration region DOI

Chenrui Wang,

Xiao Sun, Zhifeng Liu

и другие.

Landscape and Urban Planning, Год журнала: 2024, Номер 249, С. 105122 - 105122

Опубликована: Май 19, 2024

Язык: Английский

Процитировано

6

The Driving Mechanism of Urban Land Green Use Efficiency in China Based on the EBM Model with Undesirable Outputs and the Spatial Dubin Model DOI Open Access
Liangen Zeng

International Journal of Environmental Research and Public Health, Год журнала: 2022, Номер 19(17), С. 10748 - 10748

Опубликована: Авг. 29, 2022

Green development is necessary for building a high-quality modern economic system. The contribution of the article mainly includes following three parts: First study on urban land green use efficiency (ULGUE) in 30 provinces China from 2008 to 2018 by adopting epsilon-based measure (EBM) model with undesirable outputs yield more accurate and reasonable assessment result. In addition, spatial agglomeration characteristics were analysed according autocorrelation analysis. Thirdly, Durbin was applied analyse driving factors WRGUE, which considers effects. findings are as follows: (1) regional differences ULGUE very significant, number decreasing coastal region inland. (2) showed significantly positive autocorrelation, homogeneity significant than heterogeneity ULGUE. (3) Economic level, technical progress population density have impact ULGUE, while higher proportion secondary industry GDP, lower level research results may be useful reference point policymakers.

Язык: Английский

Процитировано

21