Proportional impact prediction model of coating material on nitrate leaching of slow-release Urea Super Granules (USG) using machine learning and RSM technique DOI Creative Commons

Sidhartha Sekhar Swain,

Tapan Kumar Khura,

P. Sahoo

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Фев. 6, 2024

Abstract An accurate assessment of nitrate leaching is important for efficient fertiliser utilisation and groundwater pollution reduction. However, past studies could not efficiently model due to conventional algorithms. To address the issue, current research employed advanced machine learning algorithms, viz., Support Vector Machine, Artificial Neural Network, Random Forest, M5 Tree (M5P), Reduced Error Pruning (REPTree) Response Surface Methodology (RSM) predict optimize leaching. In this study, Urea Super Granules (USG) with three different coatings were used experiment in soil columns, containing 1 kg placed between. Statistical parameters, namely correlation coefficient, Mean Absolute Error, Willmott index, Root Square Nash–Sutcliffe efficiency evaluate performance ML techniques. addition, a comparison was made test set among models which, RSM outperformed rest irrespective coating type. Neem oil/ Acacia oil(ml): clay/sulfer (g): age (days) minimum found be 2.61: 1.67: 2.4 USG bentonite clay neem oil without heating, 2.18: 2: heating 1.69: 1.64: 2.18 sulfer acacia oil. The would provide guidelines researchers policymakers select appropriate tool precise prediction leaching, which optimise yield benefit–cost ratio.

Язык: Английский

Prediction of the standardized precipitation index based on the long short-term memory and empirical mode decomposition-extreme learning machine models: The Case of Sakarya, Türkiye DOI
Ömer Coşkun, Hatice Çıtakoğlu

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2023, Номер 131, С. 103418 - 103418

Опубликована: Май 18, 2023

Язык: Английский

Процитировано

49

Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development DOI

Chaitanya B. Pande,

Johnbosco C. Egbueri, Romulus Costache

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141035 - 141035

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

41

Comparative assessment of empirical and hybrid machine learning models for estimating daily reference evapotranspiration in sub-humid and semi-arid climates DOI Creative Commons
Siham Acharki, Ali Raza, Dinesh Kumar Vishwakarma

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

5

Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India DOI

Chaitanya B. Pande,

Romulus Costache,

Saad Sh. Sammen

и другие.

Theoretical and Applied Climatology, Год журнала: 2023, Номер 152(1-2), С. 535 - 558

Опубликована: Март 23, 2023

Язык: Английский

Процитировано

30

Evaluation of CatBoost Method for Predicting Weekly Pan Evaporation in Subtropical and Sub-Humid Regions DOI
Dinesh Kumar Vishwakarma, Pankaj Kumar, Krishna Kumar Yadav

и другие.

Pure and Applied Geophysics, Год журнала: 2024, Номер 181(2), С. 719 - 747

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

17

Utilizing machine learning and CMIP6 projections for short-term agricultural drought monitoring in central Europe (1900–2100) DOI Creative Commons
Safwan Mohammed, Sana Arshad, Firas Alsilibe

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 633, С. 130968 - 130968

Опубликована: Фев. 28, 2024

Water availability for agricultural practices is dynamically influenced by climatic variables, particularly droughts. Consequently, the assessment of drought events directly related to strategic water management in sector. The application machine learning (ML) algorithms different scenarios variables a new approach that needs be evaluated. In this context, current research aims forecast short-term i.e., SPI-3 from predictors under historical (1901–2020) and future (2021–2100) employing (bagging (BG), random forest (RF), decision table (DT), M5P) Hungary, Central Europe. Three meteorological stations namely, Budapest (BD) (central Hungary), Szeged (SZ) (east south Szombathely (SzO) (west Hungary) were selected agriculture Standardized Precipitation Index (SPI-3) long run. For purpose, ensemble means three global circulation models GCMs CMIP6 are being used get projected time series indicators (i.e., rainfall R, mean temperature T, maximum Tmax, minimum Tmin two socioeconomic pathways (SSP2-4.5 SSP4-6.0). results study revealed more severe extreme past decades, which increase near (2021–2040). Man-Kendall test (Tau) along with Sen's slope (SS) also an increasing trend period Tau = −0.2, SS −0.05, −0.12, −0.09 SSP2-4.5 −0.1, −0.08 SSP4-6.0. Implementation ML scenarios: SC1 (R + T Tmax Tmin), SC2 (R), SC3 T)) at BD station RF-SC3 lowest RMSE RFSC3-TR 0.33, highest NSE 0.89 performed best forecasting on dataset. Hence, was implemented remaining (SZ SzO) 1901 2100 Interestingly, forecasted SSP2-4.5, 0.34 0.88 SZ 0.87 SzO SSP2-4.5. our findings recommend using provide accurate predictions R projections. This could foster gradual shift towards sustainability improve resources. However, concrete plans still needed mitigate negative impacts 2028, 2030, 2031, 2034. Finally, validation RF prediction large dataset makes it significant use other studies facilitates making disaster strategies.

Язык: Английский

Процитировано

15

Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand DOI

Paramjeet Singh Tulla,

Pravendra Kumar,

Dinesh Kumar Vishwakarma

и другие.

Theoretical and Applied Climatology, Год журнала: 2024, Номер 155(5), С. 4023 - 4047

Опубликована: Фев. 10, 2024

Язык: Английский

Процитировано

12

Daily scale air quality index forecasting using bidirectional recurrent neural networks: Case study of Delhi, India DOI

Chaitanya B. Pande,

Nand Lal Kushwaha, Omer A. Alawi

и другие.

Environmental Pollution, Год журнала: 2024, Номер 351, С. 124040 - 124040

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

12

Advancing Hydrology through Machine Learning: Insights, Challenges, and Future Directions Using the CAMELS, Caravan, GRDC, CHIRPS, PERSIANN, NLDAS, GLDAS, and GRACE Datasets DOI Open Access
F. M. Hasan,

Paul Medley,

Jason Drake

и другие.

Water, Год журнала: 2024, Номер 16(13), С. 1904 - 1904

Опубликована: Июль 3, 2024

Machine learning (ML) applications in hydrology are revolutionizing our understanding and prediction of hydrological processes, driven by advancements artificial intelligence the availability large, high-quality datasets. This review explores current state ML hydrology, emphasizing utilization extensive datasets such as CAMELS, Caravan, GRDC, CHIRPS, NLDAS, GLDAS, PERSIANN, GRACE. These provide critical data for modeling various parameters, including streamflow, precipitation, groundwater levels, flood frequency, particularly data-scarce regions. We discuss type methods used significant successes achieved through those models, highlighting their enhanced predictive accuracy integration diverse sources. The also addresses challenges inherent applications, heterogeneity, spatial temporal inconsistencies, issues regarding downscaling LSH, need incorporating human activities. In addition to discussing limitations, this article highlights benefits utilizing high-resolution compared traditional ones. Additionally, we examine emerging trends future directions, real-time quantification uncertainties improve model reliability. place a strong emphasis on citizen science IoT collection hydrology. By synthesizing latest research, paper aims guide efforts leveraging large techniques advance enhance water resource management practices.

Язык: Английский

Процитировано

11

Forecasting climate risk and heat stress hazards in arid ecosystems: Machine learning and ensemble models for specific humidity prediction in Dammam, Saudi Arabia DOI
Adel S. Aldosary, Baqer Al-Ramadan, Abdulla ‐ Al Kafy

и другие.

Natural Hazards, Год журнала: 2025, Номер unknown

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

2