Encoder–decoder semantic segmentation models for pressure wound images DOI
Hüseyin Eldem, Erkan Ülker,

Osman Yaşar Işıklı

и другие.

The Imaging Science Journal, Год журнала: 2022, Номер 70(2), С. 75 - 86

Опубликована: Фев. 17, 2022

Segmentation of wound images is important for efficient treatment so that appropriate methods can be recommended quickly. Wound measurement, subjective an overall assessment. The establishment a high-performance automatic segmentation system great importance care. use machine learning will make performing with high performance possible. Great success achieved deep learning, which sub-branch and has been used in the analysis recently (classification, segmentation, etc.). In this study, pressure was discussed different encoder-decoder based models. All are implemented on Medetec image dataset. experiments, FCN, PSP, UNet, SegNet DeepLabV3 architectures were five-fold cross-validation. Performances models measured experiments it demonstrated most successful architecture MobileNet-UNet 99.67% accuracy.

Язык: Английский

A review of image fusion: Methods, applications and performance metrics DOI
Simrandeep Singh, Harbinder Singh, Gloria Bueno

и другие.

Digital Signal Processing, Год журнала: 2023, Номер 137, С. 104020 - 104020

Опубликована: Март 24, 2023

Язык: Английский

Процитировано

44

An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer DOI Open Access
Essam H. Houssein, Bahaa El-din Helmy, Diego Oliva

и другие.

Biomedical Signal Processing and Control, Год журнала: 2021, Номер 73, С. 103401 - 103401

Опубликована: Дек. 13, 2021

Язык: Английский

Процитировано

72

A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation DOI
Simrandeep Singh, Harbinder Singh, Nitin Mittal

и другие.

Expert Systems with Applications, Год журнала: 2022, Номер 209, С. 118272 - 118272

Опубликована: Июль 26, 2022

Язык: Английский

Процитировано

43

ASCAEO: accelerated sine cosine algorithm hybridized with equilibrium optimizer with application in image segmentation using multilevel thresholding DOI

Shivankur Thapliyal,

Narender Kumar

Evolving Systems, Год журнала: 2024, Номер 15(4), С. 1297 - 1358

Опубликована: Янв. 16, 2024

Язык: Английский

Процитировано

12

Lung X-Ray Image Segmentation Using Heuristic Red Fox Optimization Algorithm DOI Creative Commons
Antoni Jaszcz, Dawid Połap, Robertas Damaševičius

и другие.

Scientific Programming, Год журнала: 2022, Номер 2022, С. 1 - 8

Опубликована: Июль 31, 2022

Medical image segmentation identifies an area that should be analyzed later in the processing process, such as for disease recognition and classification. As search is reduced, this action allows faster computation analysis. We propose use of a heuristic red fox optimization algorithm (RFOA) medical paper. The heuristics’ operation was adapted to analysis two-dimensional images, with focus on equation modification novel fitness function. proposed solution analyzes by converting selected pixels one two color variants, black or white, based threshold value used. Their number counted, allowing chosen threshold. result, results automatic selection parameter. Our method new function adjustment RFOA used publicly available database lung X-ray images evaluation, results, accuracy performed, well discussion benefits drawbacks presented.

Язык: Английский

Процитировано

35

Segmentation of brain MRI using an altruistic Harris Hawks’ Optimization algorithm DOI
Rajarshi Bandyopadhyay, Rohit Kundu, Diego Oliva

и другие.

Knowledge-Based Systems, Год журнала: 2021, Номер 232, С. 107468 - 107468

Опубликована: Сен. 14, 2021

Язык: Английский

Процитировано

41

Securing medical image privacy in cloud using deep learning network DOI Creative Commons

S. Gayathri,

S Gowri

Journal of Cloud Computing Advances Systems and Applications, Год журнала: 2023, Номер 12(1)

Опубликована: Март 21, 2023

Abstract The worldwide usage of Internet Things (IoT) applications enhanced the utilization consumer devices, such as smartphones, computers, screening equipment used in hospitals that merely rely on imaging techniques. Numerous images got generated over cloud platform a daily basis ad create storage complexity. On other hand, securing data stored is important. Instead storing large amount into cloud, lightweight dynamic processing suppresses complex issues security. Here secure cloud-based image architecture discussed. Privacy preserving medical communication considered specific research scope. Cryptographic technique to encode original and decode at end currently conventional design. Providing privacy records through adding noise denoising same proposed idea. work keenly focused creating light weight communicates effectively with perseverance using deep learning technique. In system, design an efficient scheme hybrid classification model created ensure reliable communication. Deep algorithms merged form Pseudo-Predictive Denoising Network (PPDD). system's benefit ensuring added security Dark Cloud newly structured algorithm. packed Gaussian act key. complete packing unpacking encapsulated by transformed images. Over premise, highly secured invisible malicious users. To reduce complexity, unpacked denoise process applied edge devices. During authorized access period alone, decrypted accessible nodes. maximum dynamically happen without depending boundary. performance PPDD network evaluated Signal ratio (SNR), Similarity index (SI),Error Rate(ER) Contrast ratio(CNR). comparatively validated existing state-of-art approach.

Язык: Английский

Процитировано

15

Application of an improved watershed algorithm based on distance map reconstruction in bean image segmentation DOI Creative Commons

Hongquan Liu,

Weijin Zhang, Fushun Wang

и другие.

Heliyon, Год журнала: 2023, Номер 9(4), С. e15097 - e15097

Опубликована: Апрель 1, 2023

As an important step in image processing, segmentation can be used to determine the accuracy of object counts, and area contour data. In addition, is indispensable seed testing research. Due uneven grey level original image, traditional watershed algorithms generate many incorrect edges, resulting oversegmentation undersegmentation, which affects obtaining phenotype information. The DMR-watershed algorithm, improved algorithm based on distance map reconstruction, proposed this paper. According distribution characteristics reduction amplitude h was selected mask with same trend as that image. greyscale reconstructed corresponding thresholds according false minima different regions are segmented, generates accurate eliminates wrong edges. An adzuki bean (Vigna angularis L.) experimental material residual rate counting results each investigated two cases two-particle adhesion multiparticle adhesion. were compared those edge detection concave point analysis commonly for segmentation. case adhesion, rates 0.233 0.275, respectively, while 0 proved suitable not applicable because it would destroy 0.063 0.188, reached 100%, effectiveness algorithm. paper significantly improves adherent seeds, provides a new reference processing testing.

Язык: Английский

Процитировано

13

Improving the segmentation of digital images by using a modified Otsu’s between-class variance DOI Open Access
Simrandeep Singh, Nitin Mittal, Harbinder Singh

и другие.

Multimedia Tools and Applications, Год журнала: 2023, Номер 82(26), С. 40701 - 40743

Опубликована: Март 31, 2023

Язык: Английский

Процитировано

12

Population-based self-adaptive Generalised Masi Entropy for image segmentation: A novel representation DOI
Seyed Jalaleddin Mousavirad, Diego Oliva, Ripon K. Chakrabortty

и другие.

Knowledge-Based Systems, Год журнала: 2022, Номер 245, С. 108610 - 108610

Опубликована: Март 21, 2022

Язык: Английский

Процитировано

17