Enhanced Metaheuristic Based Hyper-Parameters Tuning for Learning Models DOI
Jagandeep Singh, Jasminder Kaur Sandhu, Yogesh Kumar

и другие.

Опубликована: Сен. 14, 2023

Hyperparameter tuning is a crucial step in the process of building accurate machine learning models. Finding optimal combination hyperparameters can be challenging, especially complex models with large hyperparameter spaces. Genetic algorithms (GAs) have become popular approach to address this challenge by efficiently exploring space and selecting best combination. In paper, different are used along genetic search for prediction multi-diseases. The purpose using algorithm optimize hyper-parameters. Based upon evaluations we come know which performed well after hyper-parameter optimization meta heuristic optimization.

Язык: Английский

A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges DOI Open Access
Sukhpreet Kaur, Yogesh Kumar, Apeksha Koul

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(3), С. 1863 - 1895

Опубликована: Ноя. 27, 2022

Язык: Английский

Процитировано

115

A Review of Deep Transfer Learning Approaches for Class-Wise Prediction of Alzheimer’s Disease Using MRI Images DOI

Pushpendra Singh Sisodia,

Gaurav Ameta, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2409 - 2429

Опубликована: Янв. 3, 2023

Язык: Английский

Процитировано

46

Foodborne Disease Symptoms, Diagnostics, and Predictions Using Artificial Intelligence-Based Learning Approaches: A Systematic Review DOI
Yogesh Kumar, Inderpreet Kaur, Shakti Mishra

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер unknown

Опубликована: Авг. 25, 2023

Язык: Английский

Процитировано

27

A Review on Prediction and Prognosis of the Prostate Cancer and Gleason Grading of Prostatic Carcinoma Using Deep Transfer Learning Based Approaches DOI
G. Prabu Kanna,

S J K Jagadeesh Kumar,

Pavithra Parthasarathi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3113 - 3132

Опубликована: Фев. 23, 2023

Язык: Английский

Процитировано

25

A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases DOI Open Access
Kavita Thakur, Manjot Kaur, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4477 - 4497

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

24

A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases DOI
Krishna Modi, Ishbir Singh, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(8), С. 4733 - 4756

Опубликована: Июнь 24, 2023

Язык: Английский

Процитировано

18

Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning DOI
Jagandeep Singh, Jasminder Kaur Sandhu, Yogesh Kumar

и другие.

Service Oriented Computing and Applications, Год журнала: 2024, Номер 18(2), С. 163 - 182

Опубликована: Янв. 23, 2024

Язык: Английский

Процитировано

9

GestroNet: A Framework of Saliency Estimation and Optimal Deep Learning Features Based Gastrointestinal Diseases Detection and Classification DOI Creative Commons
Muhammad Attique Khan,

Naveera Sahar,

Wazir Zada Khan

и другие.

Diagnostics, Год журнала: 2022, Номер 12(11), С. 2718 - 2718

Опубликована: Ноя. 7, 2022

In the last few years, artificial intelligence has shown a lot of promise in medical domain for diagnosis and classification human infections. Several computerized techniques based on (AI) have been introduced literature gastrointestinal (GIT) diseases such as ulcer, bleeding, polyp, others. Manual these infections is time consuming, expensive, always requires an expert. As result, methods that can assist doctors second opinion clinics are widely required. The key challenges technique accurate infected region segmentation because each change shape location. Moreover, inaccurate affects feature extraction later impacts accuracy. this paper, we proposed automated framework GIT disease deep saliency maps Bayesian optimal learning selection. made up steps, from preprocessing to classification. Original images improved step by employing contrast enhancement technique. following step, map segmenting regions. segmented regions then used train pre-trained fine-tuned model called MobileNet-V2 using transfer learning. model's hyperparameters were initialized optimization (BO). average pooling layer extract features. However, several redundant features discovered during analysis phase must be removed. hybrid whale algorithm selecting best Finally, selected classified extreme machine classifier. experiment was carried out three datasets: Kvasir 1, 2, CUI Wah. achieved accuracy 98.20, 98.02, 99.61% datasets, respectively. When compared other methods, shows improvement

Язык: Английский

Процитировано

24

An Analysis of Detection and Diagnosis of Different Classes of Skin Diseases Using Artificial Intelligence-Based Learning Approaches with Hyper Parameters DOI
Jagandeep Singh, Jasminder Kaur Sandhu, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(2), С. 1051 - 1078

Опубликована: Окт. 19, 2023

Язык: Английский

Процитировано

17

Diagnosis and Detection of Congenital Diseases in New-Borns or Fetuses Using Artificial Intelligence Techniques: A Systematic Review DOI
Komalpreet Kaur, Charanjit Singh, Yogesh Kumar

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3031 - 3058

Опубликована: Фев. 11, 2023

Язык: Английский

Процитировано

16