Chipping value prediction for dicing saw based on sparrow search algorithm and neural networks DOI
Shi Jun, Peiyi Zhang, Sihan Du

и другие.

The Journal of Supercomputing, Год журнала: 2023, Номер 80(6), С. 7483 - 7506

Опубликована: Ноя. 8, 2023

Язык: Английский

Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems DOI Creative Commons
Jeffrey O. Agushaka, Absalom E. Ezugwu, Apu Kumar Saha

и другие.

Heliyon, Год журнала: 2024, Номер 10(11), С. e31629 - e31629

Опубликована: Май 24, 2024

This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The process of GCRA is inspired by intelligent foraging behaviors greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails forage through reeds grass. Such would subsequently lead food water sources shelter. exploration phase achieved when different shelters scattered around their territory trails. It presumed that alpha male maintains knowledge about these routes, result, other modify location according this information. Also, males aware breeding season separate themselves from group. assumption once group separated season, activities concentrated within areas abundant sources, which aids exploitation. Hence, smart paths mathematically represented realize design GCR algorithm carry out tasks. performance tested using twenty-two classical benchmark functions, ten CEC 2020 complex 2011 real-world continuous To further test proposed algorithm, six classic problems in engineering domain were used. Furthermore, thorough analysis computational convergence results presented shed light on efficacy stability levels GCRA. statistical significance compared with state-of-the-art algorithms Friedman's Wilcoxon's signed rank tests. These findings show produced optimal or nearly solutions evaded trap local minima, distinguishing it rival employed tackle similar optimizer source code publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra

Язык: Английский

Процитировано

35

Adaptive infinite impulse response system identification using an enhanced golden jackal optimization DOI
Jinzhong Zhang, Gang Zhang,

Min Kong

и другие.

The Journal of Supercomputing, Год журнала: 2023, Номер 79(10), С. 10823 - 10848

Опубликована: Фев. 16, 2023

Язык: Английский

Процитировано

22

A two-stage network framework for topology optimization incorporating deep learning and physical information DOI
Dalei Wang, Yun Ning, Xiang Cheng

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108185 - 108185

Опубликована: Март 2, 2024

Язык: Английский

Процитировано

6

Detection of Heart Valve Disorders Based on the Generative Adversarial Network and Whale Optimization Algorithm Using Stethoscope Sounds DOI

Narin Aslan,

Şengül Doğan, Gonca Özmen Koca

и другие.

Опубликована: Янв. 1, 2025

Background Some sounds heard during listening to the heart sound with a stethoscope, which forms basis of physical medical examination, indicate important pathological lesions pathophysiological consequences in terms valve diseases. Manual cardiac auscultation and echocardiography are not sufficient some cases for diagnosis valvule disease. In this work, we classified disease using signals obtained from stethoscope. Material Methods 8000x10366 size signal dataset is used study. Generative Adversarial Network (GAN) designed suitable dataset. The ReliefF feature selection method applied trained by GAN method. addition, training parameters optimized whale optimization parameter made training. extracted features classification methods compared performance criteria. Results Without applying optimization, highest accuracy found as 88.7% Coarse Tree After Whale algorithm, calculated 93.6% Weighted K-nearest neighbor Conclusions Applying algorithm increased accuracy.

Язык: Английский

Процитировано

0

Improved inclined plane optimization-based FLC design for reference tracking in maglev system: experimental study DOI
S. Fahira Haseen,

P. Lakshmi,

T. Deepa

и другие.

Electrical Engineering, Год журнала: 2025, Номер unknown

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

0

SDGANets: a semantically enhanced dual graph-aware network for affine and registration of remote sensing images DOI Creative Commons

Xie Zhuli,

Gang Wan, Jia Liu

и другие.

Complex & Intelligent Systems, Год журнала: 2025, Номер 11(4)

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

0

A cyber-physical production system for autonomous part quality control in polymer additive manufacturing material extrusion process DOI

Miguel Castillo,

Roberto Monroy, Rafiq Ahmad

и другие.

Journal of Intelligent Manufacturing, Год журнала: 2024, Номер 35(8), С. 3655 - 3679

Опубликована: Май 23, 2024

Язык: Английский

Процитировано

2

Development of radiation and temperature-based empirical models for accurate daily reference evapotranspiration estimation in Iraq DOI
Alaa Adel Jasim Al-Hasani, Shamsuddin Shahid

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(8), С. 3127 - 3148

Опубликована: Май 6, 2024

Язык: Английский

Процитировано

1

A Critical Review on Metaheuristic Algorithms based Multi-Criteria Decision-Making Approaches and Applications DOI

Rishabh Rishabh,

Kedar Nath Das

Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

1

Balancing data imbalance in biomedical datasets using a stacked augmentation approach with STDA, DAGAN, and pufferfish optimization to reveal AI's transformative impact DOI

Bhaskar Kumar Veedhi,

Kaberi Das, Debahuti Mishra

и другие.

International Journal of Information Technology, Год журнала: 2024, Номер unknown

Опубликована: Окт. 23, 2024

Язык: Английский

Процитировано

1