Micro-Modeling of Polymer–Masonry Wall Composites Under In-Plane Loading DOI Open Access
Houria Hernoune,

Younes Ouldkhaoua,

Benchaa Benabed

и другие.

Journal of Composites Science, Год журнала: 2025, Номер 9(4), С. 179 - 179

Опубликована: Апрель 7, 2025

Fiber-reinforced polymers (FRPs) are effective for strengthening masonry walls. Debonding at the polymer–masonry interface is a major concern, requiring further investigation into behavior. This study utilizes detailed micro-modeling finite element (FE) analysis to predict failure mechanisms and analyze behavior of brick walls strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) under in-plane loading. The research investigates three CFRP configurations (X, I, H). FE model incorporates nonlinear components using Concrete Damage Plasticity (CDP) uses cohesive approach unit–mortar interfaces bond joints between CFRPs. results demonstrate that diagonal reinforcement enhances ductility capacity wall systems. accurately captures crack propagation, fracture mechanisms, shear strength both unreinforced reinforced confirms can reliably structural these composite Furthermore, compares predicted strengths established design equations, highlighting ACI 440.7R-10 CNR-DT 200/2013 models as providing most accurate predictions when compared experimental results.

Язык: Английский

Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete DOI
Torkan Shafighfard, Farzin Kazemi, Neda Asgarkhani

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 136, С. 109053 - 109053

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

85

Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls DOI
Farzin Kazemi, Neda Asgarkhani, Robert Jankowski

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124897 - 124897

Опубликована: Июль 27, 2024

Язык: Английский

Процитировано

64

Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete DOI Creative Commons
Farzin Kazemi, Torkan Shafighfard, Robert Jankowski

и другие.

Archives of Civil and Mechanical Engineering, Год журнала: 2024, Номер 25(1)

Опубликована: Ноя. 12, 2024

Abstract Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO 2 is produced throughout the cement-making process, which in contrary to current worldwide trend lowering emissions and conserving energy, thus restricting further advancement UHPC. Considering climate change sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following emergence advanced prediction techniques aimed at reducing experimental tools labor costs, this study provides comparative different methods based on machine learning (ML) algorithms propose an active learning-based ML model (AL-Stacked ML) for predicting compressive strength AA-UHPC. A data-rich framework containing 284 datasets 18 input parameters was collected. comprehensive evaluation significance features that may affect AA-UHPC performed. Results confirm AL-Stacked ML-3 with accuracy 98.9% can be used general specimens, been tested research. Active improve up 4.1% enhance Stacked models. In addition, graphical user interface (GUI) introduced validated by tests facilitate comparable prospective studies predictions.

Язык: Английский

Процитировано

20

Grey wolf optimizer integrated within boosting algorithm: Application in mechanical properties prediction of ultra high-performance concrete including carbon nanotubes DOI
Aybike Özyüksel Çiftçioğlu, Farzin Kazemi, Torkan Shafighfard

и другие.

Applied Materials Today, Год журнала: 2025, Номер 42, С. 102601 - 102601

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

16

RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials DOI
Farzin Kazemi, Aybike Özyüksel Çiftçioğlu, Torkan Shafighfard

и другие.

Computers & Structures, Год журнала: 2025, Номер 308, С. 107657 - 107657

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

15

Unveiling the duality of cement and concrete addressing microplastic pollution: a review DOI
Lapyote Prasittisopin

Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

3

Unveiling the Combined Thermal and High Strain Rate Effects on Compressive Behavior of Steel Fiber-Reinforced Concrete: A Novel Predictive Approach DOI Creative Commons
Mohsin Ali, Li Chen, Bin Feng

и другие.

Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04384 - e04384

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Leveraging machine learning to minimize experimental trials and predict hot deformation behaviour in dual phase high entropy alloys DOI
Sandeep Jain, Reliance Jain, K. Raja Rao

и другие.

Materials Today Communications, Год журнала: 2024, Номер unknown, С. 110813 - 110813

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

9

Stacked machine learning approach for predicting evolved hydrogen from sugar industry wastewater DOI

Rezan Bakır,

Ceren Orak

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 85, С. 75 - 87

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

6

Comprehensive review of AI and ML tools for earthquake damage assessment and retrofitting strategies DOI

P. K. S. Bhadauria

Earth Science Informatics, Год журнала: 2024, Номер 17(5), С. 3945 - 3962

Опубликована: Авг. 6, 2024

Язык: Английский

Процитировано

4