A Fixed Point Approach to the Stability of a Quadratic Functional Equation in Modular Spaces Without Δ2-Conditions DOI Open Access
Parbati Saha,

Nabin Chandra Kayal,

Binayak S. Choudhury

и другие.

Tatra Mountains Mathematical Publications, Год журнала: 2024, Номер 86(1), С. 47 - 64

Опубликована: Сен. 1, 2024

Abstract In this paper, we investigate the Hyers-Ulam-Rassias stability property of a quadratic functional equation. The even and odd cases for corresponding function are treated separately before combining them into single result. study is undertaken in relatively new structure modular spaces. theorems deduced without using familiar Δ 2 -property that space. This complicated proofs. proofs, fixed point methodology used which space version Banach contraction mapping principle utilized. Several corollaries an illustrative example provided.

Язык: Английский

Modeling Ebola Dynamics with a Φ-Piecewise Hybrid Fractional Derivative Approach DOI Creative Commons
Tariq Alraqad, Mohammed A. ‬Almalahi,

Naglaa Mohammed

и другие.

Fractal and Fractional, Год журнала: 2024, Номер 8(10), С. 596 - 596

Опубликована: Окт. 11, 2024

Ebola virus disease (EVD) is a severe and often fatal illness posing significant public health challenges. This study investigates EVD transmission dynamics using novel fractional mathematical model with five distinct compartments: individuals low susceptibility (S1), high (S2), infected (I), exposed (E), recovered (R). To capture the complex of EVD, we employ Φ-piecewise hybrid derivative approach. We investigate crossover effect its impact on by dividing interval into two subintervals utilize Φ-Caputo in first Φ-ABC second interval. The determines basic reproduction number R0, analyzes stability disease-free equilibrium sensitivity parameters to understand how variations affect system’s behavior outcomes. Numerical simulations support demonstrate consistent results theoretical analysis, highlighting importance calculus modeling infectious diseases. research provides valuable information for developing effective control strategies combat EVD.

Язык: Английский

Процитировано

10

Analysis of an Acute Diarrhea Piecewise Modified ABC Fractional Model: Optimal Control, Stability and Simulation DOI Creative Commons
Yasir A. Madani, Mohammed A. ‬Almalahi, Osman Osman

и другие.

Fractal and Fractional, Год журнала: 2025, Номер 9(2), С. 68 - 68

Опубликована: Янв. 23, 2025

Acute diarrhea poses a significant global health challenge, especially in settings with poor sanitation. This study develops mathematical model of diarrhea, employing piecewise modified ABC (pmABC) fractional derivative to capture the disease’s transmission dynamics, including crossover effects between classical and behaviors. We analyze local stability disease-free equilibrium calculate basic reproduction number R0 using next-generation matrix method. Furthermore, we formulate an optimal control that incorporates both strategies reduce contact susceptible infected individuals, treat patients. Numerical simulations demonstrate model’s behavior, illustrating enhanced hygiene compliance reduces by decreasing rates, while increased effective rates elevate R0. Additionally, reveal positive correlation higher concentrations acute bacteria subsequent infections.

Язык: Английский

Процитировано

0

Necessary Optimality Conditions for Singular Controls of Caputo Fractional Systems with Delay in Control DOI

Shakir Sh. Yusubov,

Elimhan N. Mahmudov

Qualitative Theory of Dynamical Systems, Год журнала: 2025, Номер 24(2)

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

0

Exploring Impulsive and Delay Differential Systems Using Piecewise Fractional Derivatives DOI Creative Commons
Hicham Saber, Arshad Ali, Khaled Aldwoah

и другие.

Fractal and Fractional, Год журнала: 2025, Номер 9(2), С. 105 - 105

Опубликована: Фев. 10, 2025

This paper investigates a general class of variable-kernel discrete delay differential equations (DDDEs) with integral boundary conditions and impulsive effects, analyzed using Caputo piecewise derivatives. We establish results for the existence uniqueness solutions, as well their stability. The at least one solution is proven Schaefer’s fixed-point theorem, while established via Banach’s theorem. Stability examined through lens Ulam–Hyers (U-H) Finally, we illustrate application our theoretical findings numerical example.

Язык: Английский

Процитировано

0

Exploring the dynamics of HIV and HCV co-infection through piecewise modified Mittag-Leffler fractional derivatives DOI Creative Commons

Ayesha Saleem,

Mati ur Rahman,

Salah Boulaaras

и другие.

Applied Mathematics in Science and Engineering, Год журнала: 2025, Номер 33(1)

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

A Fixed Point Approach to the Stability of a Quadratic Functional Equation in Modular Spaces Without Δ2-Conditions DOI Open Access
Parbati Saha,

Nabin Chandra Kayal,

Binayak S. Choudhury

и другие.

Tatra Mountains Mathematical Publications, Год журнала: 2024, Номер 86(1), С. 47 - 64

Опубликована: Сен. 1, 2024

Abstract In this paper, we investigate the Hyers-Ulam-Rassias stability property of a quadratic functional equation. The even and odd cases for corresponding function are treated separately before combining them into single result. study is undertaken in relatively new structure modular spaces. theorems deduced without using familiar Δ 2 -property that space. This complicated proofs. proofs, fixed point methodology used which space version Banach contraction mapping principle utilized. Several corollaries an illustrative example provided.

Язык: Английский

Процитировано

0