Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(3), С. 1213 - 1232
Опубликована: Окт. 24, 2023
Язык: Английский
Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(3), С. 1213 - 1232
Опубликована: Окт. 24, 2023
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2022, Номер 149, С. 106075 - 106075
Опубликована: Сен. 6, 2022
Язык: Английский
Процитировано
119IEEE Access, Год журнала: 2023, Номер 11, С. 28992 - 29008
Опубликована: Янв. 1, 2023
Green transportation has become our top priority due to the depletion of earth's natural resources and rising pollutant emission levels. Plug-in electric vehicles (PEVs) are seen as a solution problem because they more cost environment friendly. Due rapid industrialization government incentives for zero-emission transportation, significant challenge is also constituted in power grids by self-interested nature PEVs, with asymmetry information between charging demand supply sides. In this paper, we propose an optimal strategy industrial energy management system, based on evolutionary computing, characterize different situations. The proposed approach considers stochastic, off-peak, peak, research institute scenarios attaining vehicle-to-grid capacity terms demand. An extensive scheduling cases studied order avoid outages or which there supply-demand mismatch. Furthermore, scheme model reduces greenhouse gases from generation side build sustainable infrastructure, maximizes utility fuel-based production presence certain nonlinear constraints. simulation analysis demonstrates that PEVs can be charged discharged systematic manner. participation transferable load through methodology significantly reduce economic costs, impacts, efficiency, security grid operation.
Язык: Английский
Процитировано
65Evolving Systems, Год журнала: 2023, Номер 15(1), С. 203 - 248
Опубликована: Март 6, 2023
Язык: Английский
Процитировано
40Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4449 - 4476
Опубликована: Июнь 7, 2023
Язык: Английский
Процитировано
35Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3379 - 3404
Опубликована: Март 15, 2023
Язык: Английский
Процитировано
31Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(5), С. 3133 - 3172
Опубликована: Фев. 24, 2023
Язык: Английский
Процитировано
29Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 31(1), С. 521 - 549
Опубликована: Авг. 26, 2023
Язык: Английский
Процитировано
28Archives of Computational Methods in Engineering, Год журнала: 2024, Номер 31(6), С. 3647 - 3697
Опубликована: Март 27, 2024
Язык: Английский
Процитировано
14Artificial Intelligence Review, Год журнала: 2024, Номер 57(5)
Опубликована: Апрель 24, 2024
Abstract The field of nature inspired algorithm (NIA) is a vital area research that consistently aids in solving optimization problems. One the metaheuristic classifications has drawn attention from researchers recent decades NIA. It makes significant contribution by addressing numerous large-scale problems and achieving best results. This aims to identify optimal NIA for single-objective discovered between 2019 2023 presented this study with brief description. About 83 distinct NIAs have been studied order address issues. In accomplish goal, we taken into consideration eight real-world problems: 3-bar truss design problem, rolling element bearing, pressure vessel, cantilever beam, I welded spring. Based on comparative bibliographic analysis, determined two algorithms—the flow direction algorithm, prairie dog optimization—give us results solutions all engineering listed. Lastly, some perspectives limitations, difficulties, future course are provided. addition providing guidelines, will assist novice emerging researcher more comprehensive perspective advanced
Язык: Английский
Процитировано
9Computer Science Review, Год журнала: 2025, Номер 56, С. 100727 - 100727
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
1