Application of novel deep boosting framework-based earthquake induced landslide hazards prediction approach in Sikkim Himalaya DOI
Indrajit Chowdhuri, Subodh Chandra Pal, Saeid Janizadeh

и другие.

Geocarto International, Год журнала: 2022, Номер 37(26), С. 12509 - 12535

Опубликована: Апрель 20, 2022

A major earthquake (6.9 Moment magnitude) occurred in the Sikkim and Darjeeling areas of Indian Himalaya as well adjacent Nepal on 18th September 2011, triggering a large number landslides. total 188 landslide locations were extracted order to create inventory map (LIM). The earthquake-induced susceptibility maps (LSMs) created using an Artificial Neural Network (ANN) model three novel deep learning approaches (DLAs), namely Deep Boosting (DB), Learning (DLNN), Tree (DLT), training points 22 conditioning factors. LSMs validated several statistical indices results showed optimal accuracy for all models, where DB yielding highest prediction rate curve (PRC) 98.5%. This is followed by DLT (97%), DLNN (96%), ANN (91%). demonstrate maximum efficacy proposed LSM.

Язык: Английский

Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing DOI
Wengang Zhang, Yuwei He, Luqi Wang

и другие.

Geological Journal, Год журнала: 2023, Номер 58(6), С. 2372 - 2387

Опубликована: Фев. 7, 2023

Landslide susceptibility analysis can provide theoretical support for landslide risk management. However, some analyses are not sufficiently interpretable. Moreover, the accuracy of many research methods needs to be improved. Therefore, this study supplement these deficiencies. This aims evaluation effects random forest (RF) and extreme gradient boosting (XGBoost) classifier models on susceptibility, compare their applicability in Fengjie County, Chongqing, a typical landslide‐prone area southwest China. Firstly, 1624 landslides information from 1980 2020 were obtained through field investigation, geospatial database 16 conditional factors had been constructed. Secondly, non‐landslide points selected form complete data set RF XGBoost established. Finally, under ROC curve (AUC) value, accuracy, F ‐score used two models. The results show that even though both classifiers have highly accurate model performs better. In comparison, has higher AUC value 0.866, its approximately 2% than XGBoost. land use, elevation, lithology County contribute occurrence landslides. is due human engineering activities (such as reclamation, housing construction) resulting low slope stability widely distributed sandstone, siltstone, mudstone layers owing permeability planes weakness.

Язык: Английский

Процитировано

87

GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India DOI Creative Commons
Jayanta Das, Pritam Saha, Rajib Mitra

и другие.

Heliyon, Год журнала: 2023, Номер 9(5), С. e16186 - e16186

Опубликована: Май 1, 2023

Predicting landslides is becoming a crucial global challenge for sustainable development in mountainous areas. This research compares the landslide susceptibility maps (LSMs) prepared from five GIS-based data-driven bivariate statistical models, namely, (a) Frequency Ratio (FR), (b) Index of Entropy (IOE), (c) Statistical (SI), (d) Modified Information Value Model (MIV) and (e) Evidential Belief Function (EBF). These models were tested high landslides-prone humid sub-tropical type Upper Tista basin Darjeeling-Sikkim Himalaya by integrating GIS remote sensing. The inventory map consisting 477 locations was prepared, about 70% all data utilized training model, 30% used to validate it after training. A total fourteen triggering parameters (elevation, slope, aspect, curvature, roughness, stream power index, TWI, distance stream, road, NDVI, LULC, rainfall, modified fournier lithology) taken into consideration preparing LSMs. multicollinearity statistics revealed no collinearity problem among causative factors this study. Based on FR, MIV, IOE, SI, EBF approaches, 12.00%, 21.46%, 28.53%, 31.42%, 14.17% areas, respectively, identified very landslide-prone zones. also that IOE model has highest accuracy 95.80%, followed SI (92.60%), MIV (92.20%), FR (91.50%), (89.90%) models. Consistent with actual distribution landslides, high, medium hazardous zones stretch along River major roads. suggested have enough usage mitigation long-term land use planning study area. Decision-makers local planners may utilise study's findings. techniques determining can be employed other Himalayan regions manage evaluate hazards.

Язык: Английский

Процитировано

49

Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques DOI Creative Commons
Alireza Arabameri, Subodh Chandra Pal, Fatemeh Rezaie

и другие.

Journal of Hydrology Regional Studies, Год журнала: 2021, Номер 36, С. 100848 - 100848

Опубликована: Июнь 26, 2021

The present study has been carried out in the Tabriz River basin (5397 km2) north-western Iran. Elevations vary from 1274 to 3678 m above sea level, and slope angles range 0 150.9 %. average annual minimum maximum temperatures are 2 °C 12 °C, respectively. rainfall ranges 243 641 mm, northern southern parts of receive highest amounts. In this study, we mapped groundwater potential (GWP) with a new hybrid model combining random subspace (RS) multilayer perception (MLP), naïve Bayes tree (NBTree), classification regression (CART) algorithms. A total 205 spring locations were collected by integrating field surveys data Iran Water Resources Management, divided into 70:30 for training validation. Fourteen conditioning factors (GWCFs) used as independent inputs. Statistics such receiver operating characteristic (ROC) five others evaluate performance models. results show that all models performed well GWP mapping (AUC > 0.8). MLP-RS achieved high validation scores = 0.935). relative importance GWCFs was revealed slope, elevation, TRI HAND most important predictors presence. This demonstrates ensemble can support sustainable management resources.

Язык: Английский

Процитировано

97

Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios DOI
Asish Saha, Subodh Chandra Pal,

M. Santosh

и другие.

Journal of Cleaner Production, Год журнала: 2021, Номер 320, С. 128713 - 128713

Опубликована: Авг. 20, 2021

Язык: Английский

Процитировано

94

Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements DOI
Asish Saha, Subodh Chandra Pal, Alireza Arabameri

и другие.

Journal of Environmental Management, Год журнала: 2021, Номер 287, С. 112284 - 112284

Опубликована: Март 9, 2021

Язык: Английский

Процитировано

61

A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya DOI
Suvam Das, Shantanu Sarkar, Debi Prasanna Kanungo

и другие.

Natural Hazards, Год журнала: 2022, Номер 115(1), С. 23 - 72

Опубликована: Авг. 16, 2022

Язык: Английский

Процитировано

54

Hydrogeochemical characterization based water resources vulnerability assessment in India's first Ramsar site of Chilka lake DOI

Dipankar Ruidas,

Subodh Chandra Pal, Asish Saha

и другие.

Marine Pollution Bulletin, Год журнала: 2022, Номер 184, С. 114107 - 114107

Опубликована: Сен. 11, 2022

Язык: Английский

Процитировано

48

Modelling potential land suitability of large-scale wind energy development using explainable machine learning techniques: Applications for China, USA and EU DOI
Yanwei Sun, Ying Li,

Run Wang

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 302, С. 118131 - 118131

Опубликована: Янв. 30, 2024

Язык: Английский

Процитировано

14

Enhancing landslide disaster prediction by evaluating non landslide area sampling in machine learning models for Spiti Valley India DOI Creative Commons
Devraj Dhakal, Kanwarpreet Singh, Kennedy C. Onyelowe

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

2

Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region DOI
Indrajit Chowdhuri, Subodh Chandra Pal, Rabin Chakrabortty

и другие.

Bulletin of Engineering Geology and the Environment, Год журнала: 2021, Номер 80(7), С. 5237 - 5258

Опубликована: Май 2, 2021

Язык: Английский

Процитировано

50