
Case Studies in Chemical and Environmental Engineering, Год журнала: 2024, Номер 10, С. 101006 - 101006
Опубликована: Ноя. 4, 2024
Язык: Английский
Case Studies in Chemical and Environmental Engineering, Год журнала: 2024, Номер 10, С. 101006 - 101006
Опубликована: Ноя. 4, 2024
Язык: Английский
Journal of Human Earth and Future, Год журнала: 2024, Номер 5(2), С. 216 - 242
Опубликована: Июнь 1, 2024
The management and monitoring of land use in geothermal fields are crucial for the sustainable utilization water resources, as well striking a balance between production renewable energy preservation environment. This study primarily compared Support Vector Machine (SVM) Random Forest (RF) machine learning methods, using satellite imagery from Landsat 8 Sentinel 2 2021 2023, to monitor Patuha area. objective is improve practices by accurately categorizing different cover types. comparative analysis assessed efficacy these techniques upholding sustainability regions. examined application SVM RF techniques, with particular emphasis on parameter refinement model assessment, enhance classification accuracy. By employing Kernlab e1071 algorithm comparison, research sought produce precise Land Use Model Map, which underscores significance advanced analytical environmental management. approach was utmost importance improving reinforcing practices. evaluation methods demonstrates superiority terms accuracy, stability, precision, particularly intricate urban settings, hence establishing it preferred tasks demanding high reliability. areas alignment Sustainable Development Goals (SDGs) 6 15, fosters conservation ecosystems. Doi: 10.28991/HEF-2024-05-02-06 Full Text: PDF
Язык: Английский
Процитировано
17Applied Energy, Год журнала: 2025, Номер 383, С. 125329 - 125329
Опубликована: Янв. 16, 2025
Язык: Английский
Процитировано
1Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 215, С. 115559 - 115559
Опубликована: Март 12, 2025
Язык: Английский
Процитировано
1Energy, Год журнала: 2024, Номер 307, С. 132431 - 132431
Опубликована: Июль 25, 2024
Язык: Английский
Процитировано
5International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 167, С. 110643 - 110643
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136087 - 136087
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Resources Conservation and Recycling, Год журнала: 2025, Номер 220, С. 108350 - 108350
Опубликована: Май 5, 2025
Язык: Английский
Процитировано
0Heliyon, Год журнала: 2024, Номер 10(24), С. e40997 - e40997
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2Electronics, Год журнала: 2024, Номер 13(11), С. 2200 - 2200
Опубликована: Июнь 5, 2024
The DFIG-based wind farm faces sub-synchronous oscillation (SSO) when it is integrated with a series-compensated transmission system. equivalent SSO damping influenced by both speed and compensation level. However, hard for the to obtain level in time predict risk. In this paper, an risk prediction method DFIG proposed based on characteristics identified from noise-like signals. First, SSO-related parameters are analyzed. Then, potential frequency signals at normal working points integration using variational mode decomposition Prony analysis. Finally, fuzzy inference system established of farm. effectiveness verified simulation. can risks caused variation speed, while line undetectable
Язык: Английский
Процитировано
1Energy Conversion and Management, Год журнала: 2024, Номер 325, С. 119375 - 119375
Опубликована: Дек. 13, 2024
Язык: Английский
Процитировано
1