Advances in Asian human-environmental research, Год журнала: 2023, Номер unknown, С. 53 - 62
Опубликована: Янв. 1, 2023
Язык: Английский
Advances in Asian human-environmental research, Год журнала: 2023, Номер unknown, С. 53 - 62
Опубликована: Янв. 1, 2023
Язык: Английский
Journal of Cleaner Production, Год журнала: 2024, Номер 449, С. 141822 - 141822
Опубликована: Март 19, 2024
Язык: Английский
Процитировано
10Natural Hazards, Год журнала: 2023, Номер 120(3), С. 2803 - 2827
Опубликована: Ноя. 28, 2023
Язык: Английский
Процитировано
19International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер 107, С. 104489 - 104489
Опубликована: Апрель 21, 2024
Язык: Английский
Процитировано
8International Journal of Disaster Risk Reduction, Год журнала: 2024, Номер 108, С. 104514 - 104514
Опубликована: Май 7, 2024
Язык: Английский
Процитировано
5Geosystems and Geoenvironment, Год журнала: 2024, Номер 3(4), С. 100304 - 100304
Опубликована: Июль 6, 2024
Floods are frequent natural hazards that cause widespread destruction, particularly in low-elevated areas. This study focuses on identifying flood susceptible zones the Kashmir Valley, known for historical flooding attributed to overflow of Jhelum River. Various Multi-Criteria Decision Making (MCDM) techniques, including Technique Order Preference by Similarity Ideal Solution (TOPSIS), Vise Kriterijumska Optimizacijai Compromission Resenje (VIKOR), and Evaluation Based Distance from Average (EDAS), were employed this research. A total 17 multidimensional factors considered, multicollinearity tests revealed no correlation among these factors. The results MCDM models indicate areas along River classified under very high zone. Specifically, Srinagar city is consistently zone all three models. Approximately 4.27 %, 9.67 5.39 % area identified as TOPSIS, VIKOR, EDAS, respectively. exhibited robust performance, evidenced Area Under Curve Receiver Operating Characteristics curve (AUC-ROC). Notably, VIKOR demonstrated excellent performance generating maps. favorable outcomes underscore their potential application similar regions facing comparable challenges. carries significant implications policymakers, administrators, local authorities involved management within Valley. insights provided can inform proactive measures strategies mitigate impact floods enhance overall resilience region.
Язык: Английский
Процитировано
5Journal of Environmental Studies and Sciences, Год журнала: 2023, Номер 13(2), С. 253 - 270
Опубликована: Фев. 8, 2023
Язык: Английский
Процитировано
10Environmental and Sustainability Indicators, Год журнала: 2025, Номер unknown, С. 100664 - 100664
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Geological Journal, Год журнала: 2025, Номер unknown
Опубликована: Март 20, 2025
ABSTRACT Landslides present a significant danger to both infrastructure and human lives in the challenging terrain of Himalayas. Therefore, it is crucial accurately map areas prone landslides facilitate informed decision‐making proactive planning, allowing for effective management this hazard. Since landslide occurrences are accentuated by floods through toe erosion, wildfires research aims integrate machine learning techniques with analysis multiple hazards, such as forest fires, novel conditioning factors create comprehensive susceptibility. Geospatial was conducted examine relationship between 19 elements, including related flood fire susceptibility, which contribute occurrence landslides. This study tested efficacy three models mapping landslide‐prone areas: eXtreme Gradient Boost (XGBoost), Random Forest (RF) Artificial Neural Network (ANN). These can identify complex correlations patterns among resulting more accurate regions A regression performed evaluate multicollinearity confirm association dependent independent variables. The revealed variance inflation factor within acceptable bounds, providing validation correlation. ROC–AUC curve approach used assess models' accuracy. Among tested, XGB exhibited highest accuracy at 94%, followed RF 92% ANN 77%. results offer insightful information about how combine data from various hazard forecast work be instrumental local authorities disaster organisations prioritising resources, implementing mitigation plans enhancing resilience against threats.
Язык: Английский
Процитировано
0Lecture notes in civil engineering, Год журнала: 2025, Номер unknown, С. 363 - 372
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Environment Development and Sustainability, Год журнала: 2023, Номер unknown
Опубликована: Дек. 2, 2023
Язык: Английский
Процитировано
5