Forecasting Long-Series Daily Reference Evapotranspiration Based on Best Subset Regression and Machine Learning in Egypt DOI Open Access
Ahmed Elbeltagi, Aman Srivastava, Abdullah Hassan Al-Saeedi

и другие.

Water, Год журнала: 2023, Номер 15(6), С. 1149 - 1149

Опубликована: Март 15, 2023

The estimation of reference evapotranspiration (ETo), a crucial step in the hydrologic cycle, is essential for system design and management, including balancing, planning, scheduling agricultural water supply resources. When climates vary from arid to semi-arid, there are problems with lack meteorological data future information on ETo, as case Egypt, it more important estimate ETo precisely. To address this, current study aimed model Egypt’s most governorates (Al Buhayrah, Alexandria, Ismailiyah, Minufiyah) using four machine learning (ML) algorithms: linear regression (LR), random subspace (RSS), additive (AR), reduced error pruning tree (REPTree). Climate Forecast System Reanalysis (CFSR) National Centers Environmental Prediction (NCEP) was used gather daily climate variables 1979 2014. datasets were split into two sections: training phase, i.e., 1979–2006, testing 2007–2014. Maximum temperature (Tmax), minimum (Tmin), solar radiation (SR) found be three input that had influence outcome subset sensitivity analysis. A comparative analysis ML models revealed REPTree outperformed competitors by achieving best values various performance matrices during phases. study’s novelty lies use predict this algorithm has not been commonly purpose. Given sparse attempts such research, remarkable accuracy predicting highlighted rarity study. In order combat effects aridity through better resource also cautions authorities concentrate their policymaking adaptation.

Язык: Английский

Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing DOI
M. J. Jiménez-Navarro, M. Martínez-Ballesteros, Isabel Sofía Brito

и другие.

Опубликована: Март 27, 2023

The year 2022 was the driest in Portugal since 1931 with 97% of territory severe drought.Water is especially important for agricultural sector Portugal, as it represents 78% total consumption according to Water Footprint report published 2010.Reference evapotranspiration essential due its importance optimal irrigation planning that reduces water consumption.This study analyzes and proposes a framework forecast daily reference at eight stations from 2012 without relying on public meteorological forecasts.The data include obtained sensors included stations.The goal perform multi-horizon forecasting using multiple related covariates.The combines processing analysis several state-of-the-art methods including classical, linear, tree-based, artificial neural network ensembles.Then, an ensemble all trained models proposed recent bioinspired metaheuristic named Coronavirus Optimization Algorithm weight predictions.The results terms MAE MSE are reported, indicating our approach achieved 0.658.

Язык: Английский

Процитировано

40

Application of Innovative Machine Learning Techniques for Long-Term Rainfall Prediction DOI
Suman Markuna, Pankaj Kumar, Rawshan Ali

и другие.

Pure and Applied Geophysics, Год журнала: 2023, Номер 180(1), С. 335 - 363

Опубликована: Янв. 1, 2023

Язык: Английский

Процитировано

38

Combination of discretization regression with data-driven algorithms for modeling irrigation water quality indices DOI

Dimple Dimple,

Pradeep Kumar Singh, Jitendra Rajput

и другие.

Ecological Informatics, Год журнала: 2023, Номер 75, С. 102093 - 102093

Опубликована: Апрель 1, 2023

Язык: Английский

Процитировано

34

Forecasting of stage-discharge in a non-perennial river using machine learning with gamma test DOI Creative Commons
Dinesh Kumar Vishwakarma, Alban Kuriqi, Salwan Ali Abed

и другие.

Heliyon, Год журнала: 2023, Номер 9(5), С. e16290 - e16290

Опубликована: Май 1, 2023

Knowledge of the stage-discharge rating curve is useful in designing and planning flood warnings; thus, developing a reliable fundamental crucial component water resource system engineering. Since continuous measurement often impossible, relationship generally used natural streams to estimate discharge. This paper aims optimize using generalized reduced gradient (GRG) solver test accuracy applicability hybridized linear regression (LR) with other machine learning techniques, namely, regression-random subspace (LR-RSS), regression-reduced error pruning tree (LR-REPTree), regression-support vector (LR-SVM) regression-M5 pruned (LR-M5P) models. An application these hybrid models was performed modeling Gaula Barrage problem. For this, 12-year historical data were collected analyzed. The daily flow (m3/s) stage (m) from during monsoon season, i.e., June October only 03/06/2007 31/10/2018, for discharge simulation. best suitable combination input variables LR, LR-RSS, LR-REPTree, LR-SVM, LR-M5P identified decided gamma test. GRG-based equations found be as effective more accurate conventional equations. outcomes GRG, compared observed values based on Nash Sutcliffe model efficiency coefficient (NSE), Willmott Index Agreement (d), Kling-Gupta (KGE), mean absolute (MAE), bias (MBE), relative percent (RE), root square (RMSE) Pearson correlation (PCC) determination (R2). LR-REPTree (combination 1: NSE = 0.993, d 0.998, KGE 0.987, PCC(r) 0.997, R2 0.994 minimum value RMSE 0.109, MAE 0.041, MBE −0.010 RE −0.1%; 2; 0.941, 0.984, 0. 923, 973, 947 331, 0.143, −0.089 −0.9%) superior all combinations testing period. It also noticed that performance alone LR its (i.e., LR-M5P) better than curve, including GRG method.

Язык: Английский

Процитировано

31

A Novel Hybrid Algorithms for Groundwater Level Prediction DOI
Mohsen Saroughi, Ehsan Mirzania, Dinesh Kumar Vishwakarma

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2023, Номер 47(5), С. 3147 - 3164

Опубликована: Март 9, 2023

Язык: Английский

Процитировано

30

A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration DOI
Ehsan Mirzania, Dinesh Kumar Vishwakarma, Quynh-Anh Thi Bui

и другие.

Arabian Journal of Geosciences, Год журнала: 2023, Номер 16(5)

Опубликована: Апрель 12, 2023

Язык: Английский

Процитировано

25

Forecasting actual evapotranspiration without climate data based on stacked integration of DNN and meta-heuristic models across China from 1958 to 2021 DOI
Ahmed Elbeltagi, Aman Srivastava, Penghan Li

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 345, С. 118697 - 118697

Опубликована: Сен. 7, 2023

Язык: Английский

Процитировано

25

Evaluation of CatBoost Method for Predicting Weekly Pan Evaporation in Subtropical and Sub-Humid Regions DOI
Dinesh Kumar Vishwakarma, Pankaj Kumar, Krishna Kumar Yadav

и другие.

Pure and Applied Geophysics, Год журнала: 2024, Номер 181(2), С. 719 - 747

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

17

Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand DOI

Paramjeet Singh Tulla,

Pravendra Kumar,

Dinesh Kumar Vishwakarma

и другие.

Theoretical and Applied Climatology, Год журнала: 2024, Номер 155(5), С. 4023 - 4047

Опубликована: Фев. 10, 2024

Язык: Английский

Процитировано

12

Use of gene expression programming to predict reference evapotranspiration in different climatic conditions DOI Creative Commons
Ali Raza, Dinesh Kumar Vishwakarma, Siham Acharki

и другие.

Applied Water Science, Год журнала: 2024, Номер 14(7)

Опубликована: Июнь 8, 2024

Abstract Evapotranspiration plays a pivotal role in the hydrological cycle. It is essential to develop an accurate computational model for predicting reference evapotranspiration (RET) agricultural and applications, especially management of irrigation systems, allocation water resources, assessments utilization demand use allocations rural urban areas. The limitation climatic data estimate RET restricted standard Penman–Monteith method recommended by food agriculture organization (FAO-PM56). Therefore, current study used such as minimum, maximum mean air temperature ( T max , min ), relative humidity (RH wind speed U ) sunshine hours N predict using gene expression programming (GEP) technique. In this study, total 17 different input meteorological combinations were models. obtained results each GEP are compared with FAO-PM56 evaluate its performance both training testing periods. GEP-13 RH showed lowest errors (RMSE, MAE) highest efficiencies R 2 NSE) semi-arid (Faisalabad Peshawar) humid (Skardu) conditions while GEP-11 GEP-12 perform best arid (Multan, Jacobabad) during period. However, Multan Jacobabad, GEP-7 Faisalabad, GEP-1 Peshawar, Islamabad Skardu outperformed phase, models values reach 0.99, RMSE ranged from 0.27 2.65, MAE 0.21 1.85 NSE 0.18 0.99. findings indicate that effective when there minimal data. Additionally, was identified most relevant factor across all conditions. may be planning resources practical situations, they demonstrate impact variables on associated

Язык: Английский

Процитировано

10