A hybrid butterfly and Newton–Raphson swarm intelligence algorithm based on opposition-based learning DOI

Chuan Li,

Yanjie Zhu

Cluster Computing, Год журнала: 2024, Номер 27(10), С. 14469 - 14514

Опубликована: Июль 21, 2024

Язык: Английский

Slime mould algorithm: a comprehensive review of recent variants and applications DOI
Huiling Chen, Chenyang Li, Majdi Mafarja

и другие.

International Journal of Systems Science, Год журнала: 2022, Номер 54(1), С. 204 - 235

Опубликована: Дек. 16, 2022

Slime Mould Algorithm (SMA) has recently received much attention from researchers because of its simple structure, excellent optimisation capabilities, and acceptable convergence in dealing with various types complex real-world problems. this study aims to retrieve, identify, summarise analyse critical studies related SMA development. Based on this, 98 SMA-related the Web Science were retrieved, selected, identified. The two main review vectors advanced versions SMAs application domains. First, we counted analysed SMAs, summarised, classified, discussed their improvement methods directions. Secondly, sort out domains role, development status, shortcomings each domain. A survey based existing literature shows that clearly outperform some established metaheuristics terms speed accuracy handling benchmark problems solving multiple realistic optimization This not only suggests possible future directions field but, due inclusion graphical tabular comparisons properties, also provides a comprehensive source information about SAMs scope adaptation for

Язык: Английский

Процитировано

137

Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications DOI Open Access
Farhad Soleimanian Gharehchopogh, Alaettin Uçan, Turgay İbrikçi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2683 - 2723

Опубликована: Янв. 12, 2023

Язык: Английский

Процитировано

110

An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems DOI
Weiguo Zhao, Zhenxing Zhang, Seyedali Mirjalili

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 398, С. 115223 - 115223

Опубликована: Июнь 28, 2022

Язык: Английский

Процитировано

100

Enhancing the structural performance of engineering components using the geometric mean optimizer DOI
Pranav Mehta, Ali Rıza Yıldız, Sadiq M. Sait

и другие.

Materials Testing, Год журнала: 2024, Номер 66(7), С. 1063 - 1073

Опубликована: Апрель 30, 2024

Abstract In this article, a newly developed optimization approach based on mathematics technique named the geometric mean algorithm is employed to address challenge of robot gripper, airplane bracket, and suspension arm automobiles, followed by an additional three engineering problems. Accordingly, other challenges are ten-bar truss, three-bar tubular column, spring systems. As result, demonstrates promising statistical outcomes when compared well-established algorithms. Additionally, it requires less iteration achieve global optimum solution. Furthermore, exhibits minimal deviations in results, even techniques produce better or similar outcomes. This suggests that proposed paper can be effectively utilized for wide range critical industrial real-world challenges.

Язык: Английский

Процитировано

21

Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review DOI Open Access
Rebika Rai, Arunita Das, Krishna Gopal Dhal

и другие.

Evolving Systems, Год журнала: 2022, Номер 13(6), С. 889 - 945

Опубликована: Фев. 21, 2022

Язык: Английский

Процитировано

47

Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems DOI
Qifang Luo, Shihong Yin, Guo Zhou

и другие.

Structural and Multidisciplinary Optimization, Год журнала: 2023, Номер 66(5)

Опубликована: Апрель 24, 2023

Язык: Английский

Процитировано

26

Artificial Afterimage Algorithm: A New Bio-Inspired Metaheuristic Algorithm and Its Clustering Application DOI Creative Commons
Murat Demir

Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1359 - 1359

Опубликована: Янв. 28, 2025

Metaheuristic methods are optimization that look for different ways to converge a solution problem where it is difficult find analytically. Their difference from known they imitate living things or systems in nature. Each metaheuristic method has its equations, and the found using these equations. In this study, new, called afterimage algorithm proposed. The proposed was developed inspired by fact when we close our eyes after looking at luminous image while, vision still occurs minds. This an afterimage. first pre-processes with operator calculates best worst values. visual angle value then calculated, new solutions produced around value. Three datasets were used experimental studies on data clustering. Accuracies of 96.66% iris plant dataset, 92% Wisconsin breast cancer 95% occupancy detection dataset obtained.

Язык: Английский

Процитировано

1

Recent Developments in Equilibrium Optimizer Algorithm: Its Variants and Applications DOI Open Access
Rebika Rai, Krishna Gopal Dhal

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(6), С. 3791 - 3844

Опубликована: Апрель 12, 2023

Язык: Английский

Процитировано

20

Multi-strategy boosted Aquila optimizer for function optimization and engineering design problems DOI
Hao Cui, Yaning Xiao, Abdelazim G. Hussien

и другие.

Cluster Computing, Год журнала: 2024, Номер 27(6), С. 7147 - 7198

Опубликована: Март 14, 2024

Язык: Английский

Процитировано

7

IBMSMA: An Indicator-based Multi-swarm Slime Mould Algorithm for Multi-objective Truss Optimization Problems DOI
Shihong Yin, Qifang Luo, Yongquan Zhou

и другие.

Journal of Bionic Engineering, Год журнала: 2022, Номер 20(3), С. 1333 - 1360

Опубликована: Дек. 1, 2022

Язык: Английский

Процитировано

24