APFA: Ameliorated Pathfinder Algorithm for Engineering Applications DOI

Keyu Zhong,

Fen Xiao, Xieping Gao

и другие.

Journal of Bionic Engineering, Год журнала: 2024, Номер 21(3), С. 1592 - 1616

Опубликована: Апрель 12, 2024

Язык: Английский

Accurate multilevel thresholding image segmentation via oppositional Snake Optimization algorithm: Real cases with liver disease DOI
Essam H. Houssein, Nada Abdalkarim,

Kashif Hussain

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 169, С. 107922 - 107922

Опубликована: Янв. 4, 2024

Язык: Английский

Процитировано

28

Using the snake optimization metaheuristic algorithms to extract the photovoltaic cells parameters DOI

Fatima Belabbes,

Daniel Tudor Cotfas, Petru Adrian Cotfas

и другие.

Energy Conversion and Management, Год журнала: 2023, Номер 292, С. 117373 - 117373

Опубликована: Июль 12, 2023

Язык: Английский

Процитировано

35

Crashworthiness analysis and multi‐objective optimization of Al/CFRP hybrid tube with initial damage under transverse impact DOI Open Access
Weiwen Cai, Qihua Ma, Yazhe Wang

и другие.

Polymer Composites, Год журнала: 2023, Номер 44(11), С. 7953 - 7971

Опубликована: Авг. 28, 2023

Abstract Damage can cause uncontrollable changes during the service of a structure, leading to reduction in mechanical properties and ultimately structural failure. This paper presents an experimental numerical study crashworthiness thin‐walled Al/CFRP hybrid tubes with pre‐existing transverse compression damage under impact loading. Experiments shows that initial has more limited effect on energy absorption capacity loading, but greater their deformation pattern evolution damage. After impact, cracks surface damaged tube propagate into multiple, discontinuous total length similar tube. Conversely, only short are generated intact Subsequent finite element simulations demonstrate validity accuracy coupled multi‐loads model explore different parameters (winding angle number CFRP layers, thickness Al tube) tubes. Finally, multi‐objective snake optimizer algorithm (MOSO) was used obtain optimal structure for multiple loading conditions order minimize In comparison simulation outcomes original peak crushing force (PCF) decreased by 28.46%, whereas specific (SEA) increased 44.59%. Highlight The structures is investigated means simulations. A multi‐step developed using restart method realize analysis load coupling conditions. prediction four surrogate models compared analyzed. proposed optimum

Язык: Английский

Процитировано

23

SDO: A novel sled dog-inspired optimizer for solving engineering problems DOI
Gang Hu,

Cheng Mao,

Essam H. Houssein

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102783 - 102783

Опубликована: Авг. 28, 2024

Процитировано

12

Dynamic path planning for mobile robots based on artificial potential field enhanced improved multiobjective snake optimization (APF‐IMOSO) DOI
Qilin Li, Qihua Ma, Xin Weng

и другие.

Journal of Field Robotics, Год журнала: 2024, Номер 41(6), С. 1843 - 1863

Опубликована: Апрель 29, 2024

Abstract With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta‐heuristic algorithms gained popularity owing to their efficiency and problem‐specific heuristics. However, challenges remain in terms premature convergence lack solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF‐IMOSO). This presents four key enhancements optimizer significantly improve its performance. Additionally, it introduces fitness functions focused on optimizing length, safety (evaluated via method), energy consumption, time efficiency. The results simulation experiment scenarios including static dynamic highlight APF‐IMOSO's advantages, delivering improvements 8.02%, 7.61%, 50.71%, 12.74% safety, efficiency, time‐savings, respectively, over original algorithm. Compared with other advanced meta‐heuristics, APF‐IMOSO also excels indexes. Real robot experiments show an average length error 1.19% across scenarios. reveal that can generate multiple viable collision‐free paths complex environments under various constraints, showcasing for use within realm navigation.

Язык: Английский

Процитировано

8

Design of an Improved Robust Fractional‐Order PID Controller for Buck–Boost Converter using Snake Optimization Algorithm DOI Creative Commons
Seyyedmorteza Ghamari,

Hasan Molaee,

Mehrdad Ghahramani

и другие.

IET Control Theory and Applications, Год журнала: 2025, Номер 19(1)

Опубликована: Янв. 1, 2025

ABSTRACT With the increasing complexity of modern power systems, effective control DC–DC converters has become crucial to ensure stability and efficiency. This paper focuses on optimizing parameters a known fractional‐order proportional–integral–derivative (FOPID) controller for buck–boost converter. The converter is achieved using aFOPID approach. gains this technique have been enhanced utilizing snake optimization (SO) algorithm. exhibits unfavourable behaviour due its non‐minimum structure, necessitating well‐regulated guarantee stability. fractional concept suggested here enhance dynamics classical PID controller, leveraging simplicity minimizing computational load in real‐time applications. idea an advantageous method that offers several benefits, such as reduced overshoot settling time, frequency response, non‐integer order dynamics, and, more importantly, higher robustness noise parametric variation. Despite advantages reported by technique, proper gain tuning needed dynamical performance decrease sensitivity error. Thus, algorithm SO tunes values affect efficiency method. novel strategy with numerous merits compared others, bi‐directional search elite opposition‐based learning strategies. variants offer promising alternative solving problems, combining efficiency, adaptability, competitive performance. contribution work lies FOPID enabling faster convergence improved under varying operating conditions. proposed approach validated through both simulation hardware‐in‐loop experiments, demonstrating superior conventional methods.

Язык: Английский

Процитировано

1

A systematic review of the emerging metaheuristic algorithms on solving complex optimization problems DOI
Oğuz Emrah Turgut, Mert Sinan Turgut, Erhan Kırtepe

и другие.

Neural Computing and Applications, Год журнала: 2023, Номер 35(19), С. 14275 - 14378

Опубликована: Март 26, 2023

Язык: Английский

Процитировано

20

Improving teaching-learning-based optimization algorithm with golden-sine and multi-population for global optimization DOI

Aosheng Xing,

Yong Chen,

Jinyi Suo

и другие.

Mathematics and Computers in Simulation, Год журнала: 2024, Номер 221, С. 94 - 134

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

7

Modified snake optimizer based multi-level thresholding for color image segmentation of agricultural diseases DOI
Haohao Song, Jiquan Wang, Jinling Bei

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124624 - 124624

Опубликована: Июнь 28, 2024

Язык: Английский

Процитировано

4

Improved snake optimizer based on forced switching mechanism and variable spiral search for practical applications problems DOI
Yan‐Feng Wang, Baohua Xin, Zicheng Wang

и другие.

Soft Computing, Год журнала: 2025, Номер unknown

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

0