Geostatistics and artificial intelligence coupling: advanced machine learning neural network regressor for experimental variogram modelling using Bayesian optimization DOI Creative Commons
Saâd Soulaimani, Ayoub Soulaimani, Kamal Abdelrahman

и другие.

Frontiers in Earth Science, Год журнала: 2024, Номер 12

Опубликована: Дек. 12, 2024

Experimental variogram modelling is an essential process in geostatistics. The use of artificial intelligence (AI) a new and advanced way automating experimental modelling. One part this AI approach the population search algorithms to fine-tune hyperparameters for better prediction performing. We Bayesian optimization first time find optimal learning parameters more precise neural network regressor goal leverage capability consider previous regression results improve output using three variograms as inputs one training, calculated from ore grades four orebodies, characterised by same genetic aspect. In comparison architectures, Bayesian-optimized demonstrably achieved superior Coefficient determination validation 78.36%. This significantly outperformed non-optimized wide, bilayer, tri-layer configurations, which yielded 32.94%, 14.00%, −46.03% determination, respectively. improved reliability demonstrates its superiority over traditional, regressors, indicating that incorporating can advance modelling, thus offering accurate intelligent solution, combining geostatistics specifically machine

Язык: Английский

Super-resolution reconstruction of hydrate-bearing CT images for microscopic detection of pore DOI Creative Commons
Wangquan Ye, Yu Chen, Liang Chen

и другие.

Intelligent Marine Technology and Systems, Год журнала: 2024, Номер 2(1)

Опубликована: Сен. 9, 2024

Язык: Английский

Процитировано

2

Deformation of the void space of pores and fractures of carbonates: comprehensive analysis of core and field data DOI Creative Commons
Dmitriy A. Martyushev, Inna N. Ponomareva, Shadfar Davoodi

и другие.

Energy Geoscience, Год журнала: 2024, Номер unknown, С. 100364 - 100364

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

Numerical Simulation Analysis of Control Factors on Acoustic Velocity in Carbonate Reservoirs DOI Open Access
Jiahuan He, Wei Zhang, Dan Zhao

и другие.

Minerals, Год журнала: 2024, Номер 14(4), С. 421 - 421

Опубликована: Апрель 19, 2024

The conventional Archie formula struggles with the interpretation of water saturation from resistivity well log data due to increasing complexity exploration targets. This challenge has prompted researchers explore alternative physical parameters, such as acoustic characteristics, for breakthroughs. Clarifying influencing factors porous media characteristics is one most important approaches help understanding mechanism carbonate reservoirs. article uses digital rock technology characterize pore structure, quantitatively identify fractures and structures in rocks, establish models. Through testing, pressure wave (P-wave) shear (S-wave) velocities samples at different saturations are obtained, dynamic elastic modulus calculated. A finite element calculation model established using computational provide a basis fluid methods. Based on real models, combinations virtual constructed, affecting parameters analyzed. study finds that porosity increases, velocity difference between cores fractured also increases. These findings technical support theoretical interpreting logging evaluating reservoirs fracture types.

Язык: Английский

Процитировано

1

Advanced machine learning artificial neural network classifier for lithology identification using Bayesian optimization DOI Creative Commons
Saâd Soulaimani, Ayoub Soulaimani, Kamal Abdelrahman

и другие.

Frontiers in Earth Science, Год журнала: 2024, Номер 12

Опубликована: Ноя. 20, 2024

Identifying lithology is crucial for geological exploration, and the adoption of artificial intelligence progressively becoming a refined approach to automate this process. A key feature strategy leveraging population search algorithms fine-tune hyperparameters, thus boosting prediction accuracy. Notably, Bayesian optimization has been applied first time select most effective learning parameters neural network classifiers used identification. This technique utilizes capability utilize past classification outcomes enhance models performance based on physical calculated from well log data. In comparison architectures, Bayesian-optimized (BOANN) demonstrably achieved superior accuracy in validation significantly outperformed non-optimized wide, bilayer, tri-layer configurations, indicating that incorporating can advance lithofacies recognition, offering more accurate intelligent solution identifying lithology.

Язык: Английский

Процитировано

1

Deep Super Resolution Techniques for Remote Sensing Big Data: A Comparative Study DOI
Rishabh Jain, Ranga Raju Vatsavai

2021 IEEE International Conference on Big Data (Big Data), Год журнала: 2024, Номер unknown, С. 6011 - 6020

Опубликована: Дек. 15, 2024

Язык: Английский

Процитировано

1

Geosystems Risk and Uncertainty: The Application of Chatgpt with Targeted Prompting DOI

Seyed Kourosh Mahjour,

Ramin Soltanmohammadi, Ehsan Heidaryan

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Enhancing Experimental Image Quality in Two-Phase Bubbly Systems with Super-Resolution Using Generative Adversarial Networks DOI
Miguel M. Neves,

João Filgueiras,

Zafeiris Kokkinogenis

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Enhancing Experimental Image Quality in Two-Phase Bubbly Systems with Super-Resolution Using Generative Adversarial Networks DOI
Miguel M. Neves,

João Filgueiras,

Zafeiris Kokkinogenis

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Enhancing experimental image quality in two-phase bubbly systems with super-resolution using generative adversarial networks DOI Creative Commons
Manoel Neves,

João Filgueiras,

Zafeiris Kokkinogenis

и другие.

International Journal of Multiphase Flow, Год журнала: 2024, Номер 180, С. 104952 - 104952

Опубликована: Авг. 5, 2024

Fluid Dynamics is a key scientific field to multitudes of engineering applications. Experimental work in this requires careful set-up and expensive image-capturing equipment, particularly when considering the finer details complex phenomena. In work, we study application super-resolution Generative Adversarial Networks (GANs) achieve high-resolution results by upscaling lower-resolution experimental images. We train GANs proposed for natural images on bubbly flow dataset compare common evaluation metrics domain expert assessments upscaled find that these models promising results, as evaluated experts, transfer learning from translates better performance overall. Attention mechanisms are found be useful recreating sharper details. On other hand, traditional align poorly with perception quality, signaling need systematic methodologies domain.

Язык: Английский

Процитировано

0

Resolution enhancement and segmentation of polar bubbly ice micro CT scans via 3D convolutional neural network DOI Creative Commons
Faramarz Bagherzadeh, Johannes Freitag, Udo Frese

и другие.

Applied Computing and Geosciences, Год журнала: 2024, Номер 23, С. 100193 - 100193

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

0