Academic Radiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Academic Radiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 107027 - 107027
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
7Academic Radiology, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Food Chemistry, Год журнала: 2025, Номер unknown, С. 143053 - 143053
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Frontiers in Molecular Biosciences, Год журнала: 2025, Номер 12
Опубликована: Апрель 28, 2025
Medulloblastoma (MB) and ependymoma (EM) in children share similarities terms of age group, tumor location, clinical presentation, which makes it challenging to clinically diagnose distinguish them. The present study aims explore the effectiveness T2-weighted magnetic resonance imaging (MRI)-based deep learning (DL) combined with features for differentiating MB from EM. Axial MRI sequences obtained 201 patients across three centers were used model training testing. regions interest manually delineated by an experienced neuroradiologist supervision a senior radiologist. We developed DL classifier using pretrained AlexNet architecture that was fine-tuned on our dataset. To mitigate class imbalance, we implemented data augmentation employed K-fold cross-validation enhance generalizability. For patient classification, two voting strategies: hard strategy majority prediction selected individual image slices; soft scores averaged slices threshold 0.5. Additionally, multimodality fusion constructed integrating features. performance assessed 7:3 random split dataset validation, respectively. key metrics like sensitivity, specificity, positive predictive value, negative F1 score, area under receiver operating characteristic curve (AUC), accuracy calculated, statistical comparisons performed DeLong test. Thereafter, classified as positive, while EM negative. achieved AUC values 0.712 (95% confidence interval (CI): 0.625-0.797) set 0.689 CI: 0.554-0.826) test set. In contrast, demonstrated superior 0.987 0.974-0.996) 0.889 0.803-0.949) indicated statistically significant improvement compared (p < 0.001), highlighting its enhanced discriminative ability. MRI-based multimodal can be effectively differentiate children. Thus, structure decision tree is expected greatly assist clinicians daily practice.
Язык: Английский
Процитировано
0Academic Radiology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2