Deep Reinforcement Learning Based HVAC Optimization Control Algorithm Application DOI

Linzhe Zeng,

Jian Cen,

Xi Liu

и другие.

Опубликована: Дек. 29, 2023

To address the shortcomings of Heating, Ventilation, and Air Conditioning systems (HVAC) with low energy efficiency, this paper introduces application effectiveness deep reinforcement learning in HVAC systems. Deep mainly includes model-based algorithms model-free algorithms. Model-based require a large amount system environment knowledge, which is usually difficult to obtain, while do not need knowledge model environment, so high research value. The applications domain are reviewed divided into three categories: value function-based methods, policy gradient-based actor-critic-based categories also described detail. Finally, current control summarized, future directions prospected.

Язык: Английский

Optimal shifting of peak load in smart buildings using multiagent deep clustering reinforcement learning in multi-tank chilled water systems DOI
Raad Z. Homod, Hayder I. Mohammed, Mohamed Bechir Ben Hamida

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 92, С. 112140 - 112140

Опубликована: Май 29, 2024

Язык: Английский

Процитировано

14

Health Recommendation System using Deep Learning-based Collaborative Filtering DOI Creative Commons
P. Chinnasamy, Wing‐Keung Wong,

A. Ambeth Raja

и другие.

Heliyon, Год журнала: 2023, Номер 9(12), С. e22844 - e22844

Опубликована: Ноя. 24, 2023

The crucial aspect of the medical sector is healthcare in today's modern society. To analyze a massive quantity information, system necessary to gain additional perspectives and facilitate prediction diagnosis. This device should be intelligent enough patient's state health through social activities, individual behavior analysis. Health Recommendation System (HRS) has become an essential mechanism for care. In this sense, efficient networks are critical decision-making processes. fundamental purpose maintain that sensitive information can shared only at right moment while guaranteeing effectiveness data, authenticity, security, legal concerns. As some people use media recognize their problems, recommendation systems need generate findings like diagnosis recommendations, insurance, passageway-based care strategies, homeopathic remedies associated with status. New studies aimed vast numbers by integrating multidisciplinary data from various sources addressed, which also decreases burden costs. article presents recommended HRS using deep learning Restricted Boltzmann Machine (RBM)-Coevolutionary Neural Network (CNN) provides insights on how mining techniques could used introduce effective engine highlights pharmaceutical industry's ability translate either conventional scenario towards more personalized. We developed our proposed TensorFlow Python. evaluate suggested method's performance distinct error quantities compared alternative methods dataset. Furthermore, approach's accuracy, precision, recall, F-measure were current methods.

Язык: Английский

Процитировано

17

Iot traffic-based DDoS attacks detection mechanisms: A comprehensive review DOI
Praveen Shukla,

C. Rama Krishna,

Nilesh Vishwasrao Patil

и другие.

The Journal of Supercomputing, Год журнала: 2023, Номер 80(7), С. 9986 - 10043

Опубликована: Дек. 19, 2023

Язык: Английский

Процитировано

15

Prospects and Challenges of Reinforcement Learning- Based HVAC Control DOI

Ajifowowe Iyanu,

Hojong Chang,

C Lee

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер unknown, С. 111080 - 111080

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

Green building evolution: enhancing energy efficiency and structural performance through innovative rice water and grey clay composite material DOI
Raad Z. Homod, Hayder I. Mohammed, Musatafa Abbas Abbood Albadr

и другие.

Journal of Thermal Analysis and Calorimetry, Год журнала: 2025, Номер unknown

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

0

Advancing organic photovoltaic cells for a sustainable future: The role of artificial intelligence (AI) and deep learning (DL) in enhancing performance and innovation DOI
Hussein Togun, Ali Basem, Muhsin J. Jweeg

и другие.

Solar Energy, Год журнала: 2025, Номер 291, С. 113378 - 113378

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

0

Coupling time-scale reinforcement learning methods for building operational optimization with waste heat DOI
Zhe Chen, Tian Xing, Yu Wang

и другие.

Applied Energy, Год журнала: 2025, Номер 391, С. 125851 - 125851

Опубликована: Апрель 15, 2025

Язык: Английский

Процитировано

0

Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings DOI
Raad Z. Homod, Basil Sh. Munahi, Hayder I. Mohammed

и другие.

Applied Energy, Год журнала: 2023, Номер 356, С. 122357 - 122357

Опубликована: Ноя. 30, 2023

Язык: Английский

Процитировано

9

Joint optimization for temperature and humidity independent control system based on multi-agent reinforcement learning with cooperative mechanisms DOI
Shuo Liu,

Xiaohua Liu,

Tao Zhang

и другие.

Applied Energy, Год журнала: 2024, Номер 375, С. 123968 - 123968

Опубликована: Авг. 12, 2024

Язык: Английский

Процитировано

3

Optimized Swarm Enabled Deep Learning Technique for Bone Tumor Detection using Histopathological Image DOI Creative Commons
D. Anand, Osamah Ibrahim Khalaf, Fahima Hajjej

и другие.

SINERGI, Год журнала: 2023, Номер 27(3), С. 451 - 451

Опубликована: Сен. 18, 2023

Cancer subjugates a community that lacks proper care. It remains apparent research studies enhance novel benchmarks in developing computer-assisted tool for prognosis radiology yet an indication of illness detection should be recognized by the pathologist. In bone cancer (BC), Identification malignancy out BC’s histopathological image (HI) difficult because intricate structure tissue (BTe) specimen. This study proffers new approach to diagnosing BC feature extraction alongside classification employing deep learning frameworks. this, input is processed and segmented Tsallis Entropy noise elimination, rescaling, smoothening. The features are excerpted Efficient Net-based Convolutional Neural Network (CNN) Feature Extraction. ROI will employed precise atypical portions surrounding affected area. Next, classifying accurate spotting grading BTe as typical augmented XGBoost Whale optimization (WOA). HIs gathering prevailing scales patients acquired texture characteristics such images remaining training testing (NN). These outcomes exhibit NN possesses hit ratio 99.48 percent while this occurs BT classification.

Язык: Английский

Процитировано

7