Applied Animal Behaviour Science, Год журнала: 2023, Номер 270, С. 106148 - 106148
Опубликована: Дек. 23, 2023
Язык: Английский
Applied Animal Behaviour Science, Год журнала: 2023, Номер 270, С. 106148 - 106148
Опубликована: Дек. 23, 2023
Язык: Английский
Sensors, Год журнала: 2024, Номер 24(24), С. 7978 - 7978
Опубликована: Дек. 13, 2024
Extracting behavioral information from animal sounds has long been a focus of research in bioacoustics, as sound-derived data are crucial for understanding behavior and environmental interactions. Traditional methods, which involve manual review extensive recordings, pose significant challenges. This study proposes an automated system detecting classifying vocalizations, enhancing efficiency analysis. The uses preprocessing step to segment relevant sound regions audio followed by feature extraction using Short-Time Fourier Transform (STFT), Mel-frequency cepstral coefficients (MFCCs), linear-frequency (LFCCs). These features input into convolutional neural network (CNN) classifiers evaluate performance. Experimental results demonstrate the effectiveness different CNN models with AlexNet, DenseNet, EfficientNet, ResNet50, ResNet152 being evaluated. achieves high accuracy vocal behaviors, such barking howling dogs, providing robust tool highlights importance systems bioacoustics suggests future improvements deep learning-based methods enhanced classification
Язык: Английский
Процитировано
2Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102950 - 102950
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
2Meat Science, Год журнала: 2024, Номер 220, С. 109689 - 109689
Опубликована: Окт. 19, 2024
Язык: Английский
Процитировано
1Smart Agricultural Technology, Год журнала: 2024, Номер unknown, С. 100682 - 100682
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Animals, Год журнала: 2023, Номер 13(20), С. 3276 - 3276
Опубликована: Окт. 20, 2023
Animal activity recognition (AAR) using wearable sensor data has gained significant attention due to its applications in monitoring and understanding animal behavior. However, two major challenges hinder the development of robust AAR models: domain variability difficulty obtaining labeled datasets. To address this issue, study intensively investigates impact unsupervised adaptation (UDA) for AAR. We compared three distinct types UDA techniques: minimizing divergence-based, adversarial-based, reconstruction-based approaches. By leveraging UDA, classifiers enable model learn domain-invariant features, allowing trained on source perform well target without labels. evaluated effectiveness techniques dog movement additional from horses. The application across positions (neck back), sizes (middle-sized large-sized), gender (female male) within data, as species (dog horses), exhibits improvements classification performance reduced discrepancy. results highlight potential mitigate shift enhance various settings different species, providing valuable insights practical real-world scenarios where is scarce.
Язык: Английский
Процитировано
2Journal of Veterinary Behavior, Год журнала: 2024, Номер 71, С. A3 - A5
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2024, Номер unknown
Опубликована: Окт. 14, 2024
Abstract Cage-free housing systems for laying hens, and their accompanying guidelines, legislation, audits, are becoming more common around the world. regulations often specify requirements floor space cage height, but availability of three-dimensional can vary depending on system configurations. Little research has looked at how much vertical a hen occupies while flapping her wings, which is arguably most space-intensive behavior. Therefore, objective this study was to use depth sensing camera measure maximum height hens reach when wing without physical obstructions. Twenty-eight individually caged Hy-line W36 45 weeks age were evaluated. A ceiling-mounted centered above test pen calibrated prior collecting data. During testing, one time placed in recorded wings. From footage, minimum distance between pixels obtained each frame, we computed reached by hen. Results used during event showed that 51.0 ± 4.7 cm. No measures correlated with from (P>0.05). Hens single strain, old enough have keel damage, cage-reared housed, preventing us generalizing results too far. However, cameras provide useful approach varying strains, ages, rearing/housing methods need perform dynamic behaviors.
Язык: Английский
Процитировано
0Veterinary Research Communications, Год журнала: 2024, Номер 49(1)
Опубликована: Ноя. 25, 2024
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2024, Номер 229, С. 109812 - 109812
Опубликована: Дек. 31, 2024
Язык: Английский
Процитировано
0