Air quality index prediction for clearer skies using improved long short-term memory DOI

Nilesh Bhaskarrao Bahadure,

Oshin Sahare,

Nishant Shukla

и другие.

Intelligent Decision Technologies, Год журнала: 2024, Номер unknown, С. 1 - 10

Опубликована: Сен. 10, 2024

Air pollution has become an international calamity, a problem for human health and the environment. The ability to predict air quality becomes crucial task. usual approaches assessing are exhausted when extracting complicated non-linear relationships long-term dependence features embedded in data. Long- short-term memory, recurrent neural network family, emerged as potent tool addressing mentioned issues, so computer-aided technology essential aid with high level of prediction best-in-class accuracy. In this study, we investigated classic time-series analysis based on Improved Long memory (ILSTM) improve performance index prediction. predicted AQI value 25 days lies 97.63% Confidence interval zone highly adoptable metrics such R-Square, MSE, RMSE, MAE values.

Язык: Английский

A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant DOI
Yifan Xie, Y. Chen, Qing Wei

и другие.

Water Research, Год журнала: 2023, Номер 250, С. 121092 - 121092

Опубликована: Дек. 29, 2023

Язык: Английский

Процитировано

36

Spatiotemporal Interaction Based Dynamic Adversarial Adaptive Graph Neural Network for Air-Quality Prediction DOI Creative Commons
Xiaoxia Chen, Zhen Wang, Hanzhong Xia

и другие.

Journal of Advanced Computational Intelligence and Intelligent Informatics, Год журнала: 2025, Номер 29(1), С. 138 - 151

Опубликована: Янв. 19, 2025

Air quality issues have become a major environmental concern, with severe air pollution significantly reducing and posing threats to human health. Accurate prediction is crucial for preventing individuals from suffering the detrimental effects of pollution. Recently, deep learning methods based on spatiotemporal graph neural networks (GNNs) made considerable progress in modeling temporal spatial dependencies within data by integrating GNNs sequential models. Unfortunately, previous work often treats as independent components, neglecting intricate interactions between them. This oversight prevents models fully exploiting complex data, adversely affecting their predictive performance. To address these issues, we propose general interaction framework prediction. bidirectional data-driven manner. Furthermore, designed feature extraction module dynamic adversarial adaptive this framework. We introduce Spatial-Temporal Interaction Dynamic Adversarial Adaptive Graph Neural Network, capable capturing topology among sites incorporating competitive optimization concept generative networks. Extensive experiments two real-world datasets demonstrate effectiveness proposed method, outperforming existing baseline

Язык: Английский

Процитировано

1

Air pollutant removal performance using a BiLSTM-based demand-controlled ventilation method after tunnel blasting DOI
Farun An, Dong Yang, Haibin Wei

и другие.

Journal of Wind Engineering and Industrial Aerodynamics, Год журнала: 2024, Номер 253, С. 105869 - 105869

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

7

Multimode residual monitoring of particle concentration in flue gas from Fluid Catalytic Cracking regenerator DOI
Cheng Zhu, Nan Liu, Mengxuan Zhang

и другие.

Control Engineering Practice, Год журнала: 2025, Номер 156, С. 106227 - 106227

Опубликована: Янв. 7, 2025

Язык: Английский

Процитировано

1

Time-Series Data-Driven PM2.5 Forecasting: From Theoretical Framework to Empirical Analysis DOI Creative Commons

Chengqian Wu,

Ruiyang Wang, Siyu Lu

и другие.

Atmosphere, Год журнала: 2025, Номер 16(3), С. 292 - 292

Опубликована: Фев. 28, 2025

PM2.5 in air pollution poses a significant threat to public health and the ecological environment. There is an urgent need develop accurate prediction models support decision-making reduce risks. This review comprehensively explores progress of concentration prediction, covering bibliometric trends, time series data characteristics, deep learning applications, future development directions. article obtained on 2327 journal articles published from 2014 2024 WOS database. Bibliometric analysis shows that research output growing rapidly, with China United States playing leading role, recent increasingly focusing data-driven methods such as learning. Key sources include ground monitoring, meteorological observations, remote sensing, socioeconomic activity data. Deep (including CNN, RNN, LSTM, Transformer) perform well capturing complex temporal dependencies. With its self-attention mechanism parallel processing capabilities, Transformer particularly outstanding addressing challenges long sequence modeling. Despite these advances, integration, model interpretability, computational cost remain. Emerging technologies meta-learning, graph neural networks, multi-scale modeling offer promising solutions while integrating into real-world applications smart city systems can enhance practical impact. provides informative guide for researchers novices, providing understanding cutting-edge methods, systematic paths. It aims promote robust efficient contribute global management protection efforts.

Язык: Английский

Процитировано

1

A Multi-Indicator Prediction Method for NOx Emission Concentration and Ammonia Escape value for Cement Calciner System DOI
Xiaochen Hao, Xinqiang Wang, Jinbo Liu

и другие.

Journal of Computational Science, Год журнала: 2024, Номер unknown, С. 102212 - 102212

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

6

Forecasting air quality Index in yan’an using temporal encoded Informer DOI
Shuai Ma, Jinrong He,

Jinwei He

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124868 - 124868

Опубликована: Июль 23, 2024

Язык: Английский

Процитировано

6

A novel deep-learning framework for short-term prediction of cooling load in public buildings DOI
Cairong Song, Haidong Yang, Xian-Bing Meng

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 434, С. 139796 - 139796

Опубликована: Ноя. 24, 2023

Язык: Английский

Процитировано

13

An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction DOI

Shijie Qian,

Peng Tian,

Zihan Tao

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 191, С. 836 - 851

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

5

A combined prediction system for PM2.5 concentration integrating spatio-temporal correlation extracting, multi-objective optimization weighting and non-parametric estimation DOI
Jianzhou Wang, Yuansheng Qian, Yuyang Gao

и другие.

Atmospheric Pollution Research, Год журнала: 2023, Номер 14(10), С. 101880 - 101880

Опубликована: Авг. 11, 2023

Язык: Английский

Процитировано

9