Multi‐Innovation Gradient Identification Methods for Bilinear Output‐Error Systems DOI Open Access
Meihang Li, Ximei Liu, Yamin Fan

и другие.

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Март 13, 2025

ABSTRACT This article addresses the parameter estimation problems of bilinear output‐error systems, and auxiliary model identification idea particle filtering technique are adopted to overcome obstacle resulting from unknown true outputs. Then a filtering‐based forgetting factor stochastic gradient algorithm is proposed for systems. To enhance convergence rate accuracy estimation, we expand scalar innovation an vector develop multi‐innovation algorithm. Finally, numerical example practical continuous stirred tank reactor process provided show that discussed methods work well. The results indicate algorithms effective identifying systems can generate more accurate estimates than model‐based

Язык: Английский

Highly-efficient filtered hierarchical identification algorithms for multiple-input multiple-output systems with colored noises DOI

Haoming Xing,

Feng Ding, Xiao Zhang

и другие.

Systems & Control Letters, Год журнала: 2024, Номер 186, С. 105762 - 105762

Опубликована: Март 14, 2024

Язык: Английский

Процитировано

51

Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering DOI
Huan Xu, Ling Xu, Shaobo Shen

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

36

Online identification of Hammerstein systems with B‐spline networks DOI
Yanjiao Wang, Yiting Liu, Jiehao Chen

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(6), С. 2074 - 2092

Опубликована: Март 27, 2024

Summary Nonlinear systems widely exist in real‐word applications and the research for these has enjoyed a long fruitful history, including system identification community. However, modeling nonlinear is often quite challenging still remains many unresolved questions. This article considers online issue of Hammerstein systems, whose static function modeled by B‐spline network. First, model studied constructed using bilinear parameter decomposition model. Second, recursive algorithms are proposed to find estimates moving data window particle swarm optimization procedure, show that converge their true values with low computational burden. Numerical examples also given test effectiveness algorithms.

Язык: Английский

Процитировано

25

The filtering-based recursive least squares identification and convergence analysis for nonlinear feedback control systems with coloured noises DOI
Ling Xu, Huan Xu, Chun Wei

и другие.

International Journal of Systems Science, Год журнала: 2024, Номер 55(16), С. 3461 - 3484

Опубликована: Июль 7, 2024

Язык: Английский

Процитировано

23

Decomposition‐based maximum likelihood gradient iterative algorithm for multivariate systems with colored noise DOI
Lijuan Liu

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(11), С. 7265 - 7284

Опубликована: Март 28, 2024

Summary In this paper, we use the maximum likelihood principle and negative gradient search to study identification issues of multivariate equation‐error systems whose outputs are contaminated by an moving average noise process. The model decomposition technique is used decompose system into several regressive subsystems based on number outputs. order improve parameter estimation accuracy, a decomposition‐based iterative algorithm proposed means method. numerical simulation example indicates that method has better results than compared algorithm.

Язык: Английский

Процитировано

21

Data Filtering-Based Maximum Likelihood Gradient-Based Iterative Algorithm for Input Nonlinear Box–Jenkins Systems with Saturation Nonlinearity DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 6874 - 6910

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

21

Parameter Estimation and Model-free Multi-innovation Adaptive Control Algorithms DOI
Xin Liu,

Pinle Qin

International Journal of Control Automation and Systems, Год журнала: 2024, Номер 22(11), С. 3509 - 3524

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

21

Auxiliary model maximum likelihood gradient‐based iterative identification for feedback nonlinear systems DOI
Lijuan Liu, Fu Li, Junxia Ma

и другие.

Optimal Control Applications and Methods, Год журнала: 2024, Номер 45(5), С. 2346 - 2363

Опубликована: Июнь 17, 2024

Abstract This article considers the iterative identification problems for a class of feedback nonlinear systems with moving average noise. The model contains both dynamic linear module and static module, which brings challenges to identification. By utilizing key term separation technique, unknown parameters from modules are included in parameter vector. Furthermore, an auxiliary maximum likelihood gradient‐based algorithm is derived estimate parameters. In addition, stochastic gradient as comparison. numerical simulation results indicate that can effectively get more accurate estimates than algorithm.

Язык: Английский

Процитировано

19

Auxiliary Model‐Based Maximum Likelihood Multi‐Innovation Forgetting Gradient Identification for a Class of Multivariable Systems DOI Open Access
Huihui Wang, Ximei Liu

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT Through dividing a multivariable system into several subsystems, this paper derives the sub‐identification model. Utilizing obtained model, an auxiliary model‐based maximum likelihood forgetting gradient algorithm is derived. Considering enhancing parameter estimation accuracy, multi‐innovation (AM‐ML‐MIFG) proposed taking advantage of identification theory. Simulation results test effectiveness algorithms, and confirm that AM‐ML‐MIFG has satisfactory performance in capturing dynamic properties system.

Язык: Английский

Процитировано

4

Highly Efficient Two-Stage Filtering-Based Maximum Likelihood Stochastic Gradient Algorithm for Multiple-Input Multiple-Output Systems DOI
Huihui Wang, Ximei Liu

Circuits Systems and Signal Processing, Год журнала: 2025, Номер unknown

Опубликована: Март 22, 2025

Язык: Английский

Процитировано

3