Energy, Год журнала: 2024, Номер 313, С. 133699 - 133699
Опубликована: Ноя. 2, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 313, С. 133699 - 133699
Опубликована: Ноя. 2, 2024
Язык: Английский
Knowledge-Based Systems, Год журнала: 2024, Номер 299, С. 112026 - 112026
Опубликована: Июнь 6, 2024
Bitcoin price volatility fascinates both researchers and investors, studying features that influence its movement. This paper expends on previous research examines time series data of various exogenous endogenous factors: Bitcoin, Ethereum, S&P 500, VIX closing prices; exchange rates the Euro GPB to USD; number Bitcoin-related tweets per day. A period three years (from September 2019 2022) is covered by dataset. two-layer framework introduced tasked with accurately forecasting price. In first layer, account for complexities in analyzed data, variational mode decomposition (VMD) extracts trends from series. second Long short-term memory hybrid Bidirectional long networks were used forecast prices several steps ahead. work also an enhanced variant sine cosine algorithm tune control parameters VMD neural attaining best possible performance. The main focus combining modified metaheuristics improve cryptocurrency value forecast. Two sets experiments conducted, without VMD. results have been contrasted models tuned seven other cutting-edge optimizers. Extensive experimental outcomes indicate can be forecasted great accuracy using selected decomposition. Additionally, model was analyzed, Shapley values indicated such as EUR/USD rates, Ethereum prices, GBP/USD a significant impact forecasts.
Язык: Английский
Процитировано
17Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112779 - 112779
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2025, Номер 374, С. 124035 - 124035
Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 383, С. 125330 - 125330
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
0Journal of Environmental Management, Год журнала: 2025, Номер 375, С. 124237 - 124237
Опубликована: Янв. 29, 2025
Язык: Английский
Процитировано
0Energies, Год журнала: 2025, Номер 18(7), С. 1712 - 1712
Опубликована: Март 29, 2025
Energy hubs integrating onsite renewable generation and battery storage provide cost-efficient solutions for meeting building electricity requirements. This study presents methods modeling uncertainties in load demand solar generation, ranging from normal distribution assumptions to distributions sourced CityLearn 2.3.0. We also implement kernel density estimation (KDE) represent the non-parametric characteristics of actual data. Through Monte Carlo simulation, we emphasize value robust, data-driven methodologies optimizing energy hub operations under realistic uncertainty conditions effectively conducting risk assessment. The real-world data confirms that non-Gaussian nature building-level PV output is most accurately represented through KDE, leading more precise cost projections considered hub.
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136309 - 136309
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Systems and Soft Computing, Год журнала: 2025, Номер unknown, С. 200265 - 200265
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2024, Номер 167, С. 112311 - 112311
Опубликована: Окт. 10, 2024
Язык: Английский
Процитировано
1Information Sciences, Год журнала: 2024, Номер 692, С. 121651 - 121651
Опубликована: Ноя. 16, 2024
Язык: Английский
Процитировано
1