
Case Studies in Chemical and Environmental Engineering, Год журнала: 2024, Номер unknown, С. 101078 - 101078
Опубликована: Дек. 1, 2024
Язык: Английский
Case Studies in Chemical and Environmental Engineering, Год журнала: 2024, Номер unknown, С. 101078 - 101078
Опубликована: Дек. 1, 2024
Язык: Английский
Desalination and Water Treatment, Год журнала: 2025, Номер unknown, С. 101057 - 101057
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Results in Chemistry, Год журнала: 2024, Номер 12, С. 101886 - 101886
Опубликована: Ноя. 2, 2024
Язык: Английский
Процитировано
7Chemical Engineering Journal Advances, Год журнала: 2024, Номер 20, С. 100655 - 100655
Опубликована: Окт. 9, 2024
Язык: Английский
Процитировано
6Journal of Analytical and Applied Pyrolysis, Год журнала: 2024, Номер 181, С. 106567 - 106567
Опубликована: Июнь 2, 2024
Язык: Английский
Процитировано
5Energy Conversion and Management X, Год журнала: 2024, Номер unknown, С. 100723 - 100723
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
4Indian Chemical Engineer, Год журнала: 2025, Номер unknown, С. 1 - 18
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
0International Journal of Energy Research, Год журнала: 2025, Номер 2025(1)
Опубликована: Янв. 1, 2025
The thermogravimetric analysis (TGA) data of wood present a very similar layout, which makes it difficult to obtain information on components or types biomass with traditional techniques, are generally based the decrease in weight sample at specific temperature values. In this work, artificial neural networks applied as an innovative technique identify species differences more effectively. This work evaluates use TGA markers (similar genetic markers) biomass. That is multiple values percentage residual respect initial one temperatures data. These achieve classification by automatically adjusting weights training patterns input marker By replicating curve for same and having unique characteristics, becomes valuable tool characterize composition. application intelligence techniques possible provide detailed about improve accuracy classification. results demonstrate that network successfully classified 95% samples from eight different accurately determined composition 98% precision.
Язык: Английский
Процитировано
0Biomass Conversion and Biorefinery, Год журнала: 2024, Номер unknown
Опубликована: Май 9, 2024
Язык: Английский
Процитировано
3Biomass Conversion and Biorefinery, Год журнала: 2025, Номер unknown
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
0Biofuels Bioproducts and Biorefining, Год журнала: 2024, Номер unknown
Опубликована: Дек. 19, 2024
Abstract The behavior of biomass pyrolysis can be predicted by analyzing its characteristics. This study aimed to model the release volatiles across various temperatures, properties, and heating rates. Palm kernel shells were pyrolyzed at 433–773 K with a rate 5 K·min −1 using volatile‐state kinetic modeling. process began calculating type number ( N CT ), which was used determine volatile enhancement V E yield Y VY product i mass fraction y ). parameters, including activation energy for formation ai derived through fitting process. results indicate 70.77% within devolatilization zone, corresponding degradation cellulose hemicellulose. increased higher lower , ranged from 155–185 kJ·mol⁻¹ biocrude oil (BCO) 149–186 gas. parameters demonstrated errors below 0.2% in comparison experimental data, confirming model's accuracy reliability.
Язык: Английский
Процитировано
1