Computers & Chemical Engineering, Год журнала: 2024, Номер 191, С. 108856 - 108856
Опубликована: Авг. 30, 2024
Язык: Английский
Computers & Chemical Engineering, Год журнала: 2024, Номер 191, С. 108856 - 108856
Опубликована: Авг. 30, 2024
Язык: Английский
Processes, Год журнала: 2025, Номер 13(2), С. 294 - 294
Опубликована: Янв. 21, 2025
Anaerobic digestion (AD) is a biotechnological process in which the microorganisms degrade complex organic matter to simpler components under anaerobic conditions produce biogas and fertilizer. This has many environmental benefits, such as green energy production, waste treatment, protection, greenhouse gas emissions reduction. It long been known that two main species (acidogenic bacteria methanogenic archaea) community of AD differ aspects, optimal for their growth development are different. Therefore, if performed single bioreactor (single-phase process), selected taking into account slow-growing methanogens at expense fast-growing acidogens, affecting efficiency whole process. led two-stage (TSAD) recent years, where processes divided cascade separate bioreactors (BRs). division consecutive BRs leads significantly higher yields two-phase system (H2 + CH4) compared traditional single-stage CH4 production review presents state art, advantages disadvantages, some perspectives (based on more than 210 references from 2002 2024 our own studies), including all aspects TSAD—different parameters’ influences, types bioreactors, microbiology, mathematical modeling, automatic control, energetical considerations TSAD processes.
Язык: Английский
Процитировано
2Bioresource Technology, Год журнала: 2022, Номер 370, С. 128501 - 128501
Опубликована: Дек. 17, 2022
Язык: Английский
Процитировано
58Bioresource Technology, Год журнала: 2022, Номер 369, С. 128451 - 128451
Опубликована: Дек. 9, 2022
Язык: Английский
Процитировано
41Renewable Energy, Год журнала: 2025, Номер unknown, С. 122714 - 122714
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Circular Economy, Год журнала: 2024, Номер 3(2), С. 100088 - 100088
Опубликована: Май 31, 2024
Biological treatment technologies (such as anaerobic digestion, composting, and insect farming) have been extensively employed to handle various degradable organic wastes. However, the inherent complexity instability of biological processes adversely affect production renewable energy nutrient-rich products. To ensure stable consistent product quality, researchers invested heavily in control strategies for treatment, with machine learning (ML) recently proving effective optimizing predicting parameters, detecting disturbances, enabling real-time monitoring. This review critically assesses application ML providing an in-depth evaluation key algorithms. study reveals that artificial neural networks, tree-based models, support vector machines, genetic algorithms are leading treatment. A thorough investigation applications farming underscores its remarkable capacity predict products, optimize processes, perform monitoring, mitigate pollution emissions. Furthermore, this outlines challenges prospects encountered applying highlighting crucial directions future research area.
Язык: Английский
Процитировано
8Bioresource Technology, Год журнала: 2023, Номер 386, С. 129519 - 129519
Опубликована: Июль 18, 2023
Язык: Английский
Процитировано
16Measurement, Год журнала: 2023, Номер 218, С. 113195 - 113195
Опубликована: Июнь 11, 2023
Язык: Английский
Процитировано
14Sustainable Energy Technologies and Assessments, Год журнала: 2024, Номер 73, С. 104123 - 104123
Опубликована: Дек. 7, 2024
Язык: Английский
Процитировано
5Bioresource Technology, Год журнала: 2022, Номер 370, С. 128518 - 128518
Опубликована: Дек. 21, 2022
Recent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability incompatibility make it challenging to apply ML complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts delineate applications bioprocess from different perspectives, their inherent limitations (i.e., uncertainties prediction) were then discussed unique supplement models. A clear classification can made depending purpose (supervised vs unsupervised) per application, as well system boundaries (engineered natural). Although a limited number hybrid approaches meaningful outcomes (e.g., improved accuracy) are available, there is still need further enhance interpretability, compatibility, user-friendliness
Язык: Английский
Процитировано
22Measurement, Год журнала: 2025, Номер unknown, С. 117061 - 117061
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0