Semi-supervised regression based on Representation Learning for fermentation processes DOI
Jing Liu, Junxian Wang, Jianye Xia

и другие.

Computers & Chemical Engineering, Год журнала: 2024, Номер 191, С. 108856 - 108856

Опубликована: Авг. 30, 2024

Язык: Английский

Two-Stage Anaerobic Digestion for Green Energy Production: A Review DOI Open Access
Иван Симеонов, Elena Chorukova, Lyudmila Kabaivanova

и другие.

Processes, Год журнала: 2025, Номер 13(2), С. 294 - 294

Опубликована: Янв. 21, 2025

Anaerobic digestion (AD) is a biotechnological process in which the microorganisms degrade complex organic matter to simpler components under anaerobic conditions produce biogas and fertilizer. This has many environmental benefits, such as green energy production, waste treatment, protection, greenhouse gas emissions reduction. It long been known that two main species (acidogenic bacteria methanogenic archaea) community of AD differ aspects, optimal for their growth development are different. Therefore, if performed single bioreactor (single-phase process), selected taking into account slow-growing methanogens at expense fast-growing acidogens, affecting efficiency whole process. led two-stage (TSAD) recent years, where processes divided cascade separate bioreactors (BRs). division consecutive BRs leads significantly higher yields two-phase system (H2 + CH4) compared traditional single-stage CH4 production review presents state art, advantages disadvantages, some perspectives (based on more than 210 references from 2002 2024 our own studies), including all aspects TSAD—different parameters’ influences, types bioreactors, microbiology, mathematical modeling, automatic control, energetical considerations TSAD processes.

Язык: Английский

Процитировано

2

Applications of artificial intelligence in anaerobic co-digestion: Recent advances and prospects DOI Creative Commons
Muzammil Khan, Wachiranon Chuenchart, K.C. Surendra

и другие.

Bioresource Technology, Год журнала: 2022, Номер 370, С. 128501 - 128501

Опубликована: Дек. 17, 2022

Язык: Английский

Процитировано

58

Artificial intelligence technologies in bioprocess: Opportunities and challenges DOI

Yang Cheng,

Xinyu Bi,

Yameng Xu

и другие.

Bioresource Technology, Год журнала: 2022, Номер 369, С. 128451 - 128451

Опубликована: Дек. 9, 2022

Язык: Английский

Процитировано

41

Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap DOI

Anu Chaudhary,

Ranju Kumari Rathour, Preeti Solanki

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122714 - 122714

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Applications of machine learning tools for biological treatment of organic wastes: Perspectives and challenges DOI Creative Commons
Long Chen, Pinjing He, Hua Zhang

и другие.

Circular Economy, Год журнала: 2024, Номер 3(2), С. 100088 - 100088

Опубликована: Май 31, 2024

Biological treatment technologies (such as anaerobic digestion, composting, and insect farming) have been extensively employed to handle various degradable organic wastes. However, the inherent complexity instability of biological processes adversely affect production renewable energy nutrient-rich products. To ensure stable consistent product quality, researchers invested heavily in control strategies for treatment, with machine learning (ML) recently proving effective optimizing predicting parameters, detecting disturbances, enabling real-time monitoring. This review critically assesses application ML providing an in-depth evaluation key algorithms. study reveals that artificial neural networks, tree-based models, support vector machines, genetic algorithms are leading treatment. A thorough investigation applications farming underscores its remarkable capacity predict products, optimize processes, perform monitoring, mitigate pollution emissions. Furthermore, this outlines challenges prospects encountered applying highlighting crucial directions future research area.

Язык: Английский

Процитировано

8

Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review DOI
Prawat Sukphun,

Worapong Wongarmat,

Tsuyoshi Imai

и другие.

Bioresource Technology, Год журнала: 2023, Номер 386, С. 129519 - 129519

Опубликована: Июль 18, 2023

Язык: Английский

Процитировано

16

A soft sensor model based on CNN-BiLSTM and IHHO algorithm for Tennessee Eastman process DOI
Yiman Li, Peng Tian, Wei Sun

и другие.

Measurement, Год журнала: 2023, Номер 218, С. 113195 - 113195

Опубликована: Июнь 11, 2023

Язык: Английский

Процитировано

14

Recent advancements in biomass to bioenergy management and carbon capture through artificial intelligence integrated technologies to achieve carbon neutrality DOI

Shivani Chauhan,

Preeti Solanki, Chayanika Putatunda

и другие.

Sustainable Energy Technologies and Assessments, Год журнала: 2024, Номер 73, С. 104123 - 104123

Опубликована: Дек. 7, 2024

Язык: Английский

Процитировано

5

Opportunities and challenges of machine learning in bioprocesses: Categorization from different perspectives and future direction DOI Creative Commons
Seung Ji Lim, Moon Son, Seo Jin Ki

и другие.

Bioresource Technology, Год журнала: 2022, Номер 370, С. 128518 - 128518

Опубликована: Дек. 21, 2022

Recent advances in machine learning (ML) have revolutionized an extensive range of research and industry fields by successfully addressing intricate problems that cannot be resolved with conventional approaches. However, low interpretability incompatibility make it challenging to apply ML complicated bioprocesses, which rely on the delicate metabolic interplay among living cells. This overview attempts delineate applications bioprocess from different perspectives, their inherent limitations (i.e., uncertainties prediction) were then discussed unique supplement models. A clear classification can made depending purpose (supervised vs unsupervised) per application, as well system boundaries (engineered natural). Although a limited number hybrid approaches meaningful outcomes (e.g., improved accuracy) are available, there is still need further enhance interpretability, compatibility, user-friendliness

Язык: Английский

Процитировано

22

A quality-driven multi-attribute channel hybrid neural network for soft sensing in refining processes DOI
Zhi Li,

Kaige Xue,

Junfeng Chen

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117061 - 117061

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0