Comparative Evaluation of Ensemble Machine Learning Models for Methane Production from Anaerobic Digestion DOI Creative Commons
Dorijan Radočaj, Mladen Jurišić

Fermentation, Год журнала: 2025, Номер 11(3), С. 130 - 130

Опубликована: Март 7, 2025

This study provides a comparative evaluation of several ensemble model constructions for the prediction specific methane yield (SMY) from anaerobic digestion. From authors’ knowledge based on existing research, present their accuracy and utilization in digestion modeling relative to individual machine learning methods is incomplete. Three input datasets compiled samples using agricultural forestry lignocellulosic residues previous studies were used this study. A total six five evaluated per dataset, whose was assessed robust 10-fold cross-validation 100 repetitions. Ensemble models outperformed one out three terms accuracy. They also produced notably lower coefficients variation root-mean-square error (RMSE) than most accurate (0.031 0.393 dataset A, 0.026 0.272 B, 0.021 0.217 AB), being much less prone randomness training test data split. The optimal generally benefited higher number included, as well diversity principles. Since reporting final fitting single split-sample approach highly randomness, adoption multiple repetitions proposed standard future studies.

Язык: Английский

Tree-based machine learning model for visualizing complex relationships between biochar properties and anaerobic digestion DOI
Yi Zhang,

Yijing Feng,

Zhonghao Ren

и другие.

Bioresource Technology, Год журнала: 2023, Номер 374, С. 128746 - 128746

Опубликована: Фев. 20, 2023

Язык: Английский

Процитировано

47

Machine learning-based optimization of catalytic hydrodeoxygenation of biomass pyrolysis oil DOI

Xiangmeng Chen,

Alireza Shafizadeh, Hossein Shahbeik

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 437, С. 140738 - 140738

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

21

Innovative Computational Intelligence Frameworks for Complex Problem Solving and Optimization DOI Open Access

N. Ramesh Babu,

Vidya Kamma,

R. Logesh Babu

и другие.

International Journal of Computational and Experimental Science and Engineering, Год журнала: 2025, Номер 11(1)

Опубликована: Янв. 9, 2025

The rapid advancement of computational intelligence (CI) techniques has enabled the development highly efficient frameworks for solving complex optimization problems across various domains, including engineering, healthcare, and industrial systems. This paper presents innovative that integrate advanced algorithms such as Quantum-Inspired Evolutionary Algorithms (QIEA), Hybrid Metaheuristics, Deep Learning-based models. These aim to address challenges by improving convergence rates, solution accuracy, efficiency. In context a framework was successfully used predict optimal treatment plans cancer patients, achieving 92% accuracy rate in classification tasks. proposed demonstrate potential addressing broad spectrum problems, from resource allocation smart grids dynamic scheduling manufacturing integration cutting-edge CI methods offers promising future optimizing performance real-world wide range industries.

Язык: Английский

Процитировано

4

ALPOA: Adaptive Learning Path Optimization Algorithm for Personalized E-Learning Experiences DOI Open Access

R. T. Subhalakshmi,

S. Geetha,

S. Dhanabal

и другие.

International Journal of Computational and Experimental Science and Engineering, Год журнала: 2025, Номер 11(1)

Опубликована: Фев. 5, 2025

In this study, we propose the Adaptive Learning Path Optimization Algorithm (ALPOA) to enhance personalized e-learning experiences by tailoring content delivery based on individual learner profiles. ALPOA employs a hybrid optimization framework combining Genetic (GA) and Particle Swarm (PSO) dynamically adjust learning paths. The algorithm considers multiple factors such as proficiency, speed, engagement level, difficulty. Experimental results demonstrate that outperforms traditional static models, achieving 25% improvement in efficiency, 30% increase engagement, 20% reduction redundancy. model was tested dataset of 1,500 learners, showing 97% accuracy predicting optimal paths 15% higher knowledge retention rate compared benchmark algorithms. ALPOA’s scalability adaptability make it promising solution for education systems, fostering improved outcomes satisfaction. Future work will focus integrating real-time feedback mechanisms expanding support diverse environments.

Язык: Английский

Процитировано

3

Two-Stage Anaerobic Digestion for Green Energy Production: A Review DOI Open Access
Иван Симеонов, Elena Chorukova, Lyudmila Kabaivanova

и другие.

Processes, Год журнала: 2025, Номер 13(2), С. 294 - 294

Опубликована: Янв. 21, 2025

Anaerobic digestion (AD) is a biotechnological process in which the microorganisms degrade complex organic matter to simpler components under anaerobic conditions produce biogas and fertilizer. This has many environmental benefits, such as green energy production, waste treatment, protection, greenhouse gas emissions reduction. It long been known that two main species (acidogenic bacteria methanogenic archaea) community of AD differ aspects, optimal for their growth development are different. Therefore, if performed single bioreactor (single-phase process), selected taking into account slow-growing methanogens at expense fast-growing acidogens, affecting efficiency whole process. led two-stage (TSAD) recent years, where processes divided cascade separate bioreactors (BRs). division consecutive BRs leads significantly higher yields two-phase system (H2 + CH4) compared traditional single-stage CH4 production review presents state art, advantages disadvantages, some perspectives (based on more than 210 references from 2002 2024 our own studies), including all aspects TSAD—different parameters’ influences, types bioreactors, microbiology, mathematical modeling, automatic control, energetical considerations TSAD processes.

Язык: Английский

Процитировано

2

Artificial intelligence and machine learning for smart bioprocesses DOI
Samir Kumar Khanal, Ayon Tarafdar, Siming You

и другие.

Bioresource Technology, Год журнала: 2023, Номер 375, С. 128826 - 128826

Опубликована: Март 5, 2023

Язык: Английский

Процитировано

41

Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning DOI
Yalin Li,

Zhuangzhuang Xue,

Suyan Li

и другие.

Bioresource Technology, Год журнала: 2023, Номер 385, С. 129444 - 129444

Опубликована: Июль 1, 2023

Язык: Английский

Процитировано

26

Auto-tuning data-driven model for biogas yield prediction from anaerobic digestion of sewage sludge at the south-tehran wastewater treatment plant: Feature selection and hyperparameter population-based optimization DOI
Farzad Farzin, Shabnam Sadri Moghaddam, Majid Ehteshami

и другие.

Renewable Energy, Год журнала: 2024, Номер 227, С. 120554 - 120554

Опубликована: Апрель 23, 2024

Язык: Английский

Процитировано

10

Ensemble machine learning prediction of anaerobic co-digestion of manure and thermally pretreated harvest residues DOI
Đurđica Kovačić, Dorijan Radočaj, Mladen Jurišić

и другие.

Bioresource Technology, Год журнала: 2024, Номер 402, С. 130793 - 130793

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

9

Hydrogen and biomethane pathways to achieve sustainable transportation in circular economic concept: A review DOI
Ayyadurai Saravanakumar,

M Sudha,

Wei‐Hsin Chen

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1