
Biochar, Год журнала: 2024, Номер 6(1)
Опубликована: Сен. 19, 2024
Язык: Английский
Biochar, Год журнала: 2024, Номер 6(1)
Опубликована: Сен. 19, 2024
Язык: Английский
Applied Catalysis B Environment and Energy, Год журнала: 2023, Номер 340, С. 123223 - 123223
Опубликована: Сен. 1, 2023
Язык: Английский
Процитировано
48Bioresource Technology, Год журнала: 2024, Номер 394, С. 130291 - 130291
Опубликована: Янв. 4, 2024
Язык: Английский
Процитировано
20Carbon Neutrality, Год журнала: 2024, Номер 3(1)
Опубликована: Янв. 8, 2024
Abstract The utilization of biochar derived from biomass residue to enhance anaerobic digestion (AD) for bioenergy recovery offers a sustainable approach advance energy and mitigate climate change. However, conducting comprehensive research on the optimal conditions AD experiments with addition poses challenge due diverse experimental objectives. Machine learning (ML) has demonstrated its effectiveness in addressing this issue. Therefore, it is essential provide an overview current ML-optimized processes biochar-enhanced order facilitate more systematic ML tools. This review comprehensively examines material flow preparation impact comprehension reviewed optimize production process perspective. Specifically, summarizes application techniques, based artificial intelligence, predicting yield properties residues, as well their AD. Overall, analysis address challenges recovery. In future research, crucial tackle that hinder implementation pilot-scale reactors. It recommended further investigate correlation between physicochemical process. Additionally, enhancing role throughout entire holds promise achieving economically environmentally optimized efficiency. Graphical
Язык: Английский
Процитировано
19Chemical Engineering Journal, Год журнала: 2024, Номер 485, С. 149975 - 149975
Опубликована: Фев. 24, 2024
Язык: Английский
Процитировано
18Bioresource Technology, Год журнала: 2023, Номер 387, С. 129634 - 129634
Опубликована: Авг. 21, 2023
Язык: Английский
Процитировано
29Chemical Engineering Journal, Год журнала: 2023, Номер 475, С. 146069 - 146069
Опубликована: Сен. 15, 2023
Язык: Английский
Процитировано
27ACS Sustainable Chemistry & Engineering, Год журнала: 2024, Номер 12(19), С. 7578 - 7590
Опубликована: Апрель 29, 2024
Incorporating density functional theory (DFT) and machine learning (ML) methodologies, an intrinsic relationship model was developed utilizing the Kamlet–Taft parameters polarity values of 104 deep eutectic solvents (DES). DES with high lignocellulosic pretreatment efficiency were expected to be screened through synergistic combination hydrogen bond acidity (α), basicity (β), polarization (Π*) molecular index (MPI). Partial least-squares (PLS) models a variety ML used predict cellulose retention delignification. The XGBoost has highest predictive performance R2 0.97 0.91, respectively. Feature importance analysis partial dependence explain variables based on model. showed that α, β, Π* MPI donor determined efficiency. among 4 is nonlinear, there are multiple extreme in different intervals. gave parameter range corresponding Based given this study, composition ratio can selected ensure at least 80% retained 50% lignin removed. Molecular simulation results these highly efficient often contain large number bonds polar groups.
Язык: Английский
Процитировано
13Bioresource Technology, Год журнала: 2024, Номер 399, С. 130624 - 130624
Опубликована: Март 21, 2024
Язык: Английский
Процитировано
10Bioresource Technology, Год журнала: 2025, Номер unknown, С. 132115 - 132115
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2025, Номер 377, С. 124627 - 124627
Опубликована: Фев. 23, 2025
Язык: Английский
Процитировано
1