International Journal of Hydrogen Energy, Год журнала: 2025, Номер 138, С. 331 - 343
Опубликована: Май 17, 2025
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2025, Номер 138, С. 331 - 343
Опубликована: Май 17, 2025
Язык: Английский
Energy and AI, Год журнала: 2024, Номер 18, С. 100414 - 100414
Опубликована: Авг. 13, 2024
This study optimizes biomass chemical looping processes (BCLpro), a technique for converting to energy, through machine learning (ML) sustainable energy production. The proposes an integrated Fe2O3-based ฺBCLpro combining steam gasification H2 Aspen Plus is used as the primary tool generate extensive datasets covering 24 types with 18 feature inputs in supervised model. A methodology involving K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), Light Machine (LGBM), Support Vector (SVM), Random Forest (RF), and CatBoost (CB) algorithms was employed predict yields BCLpro, utilizing 10-fold cross-validation robust model evaluation. Findings highlight CB algorithm's superior performance, achieving up 98% predictive accuracy, carbon content, reducer temperature, Fe2O3/Al2O3 mass ratio identified crucial features. algorithm has been developed into user-friendly tool, BCLH2Pro, accessible via web server. designed assist reducing costs, optimizing selection, planning operational conditions maximize yield BCLpro systems. Access can be obtained following link: http://bclh2pro.pythonanywhere.com/.
Язык: Английский
Процитировано
7Results in Engineering, Год журнала: 2024, Номер unknown, С. 103236 - 103236
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
7International Journal of Green Energy, Год журнала: 2023, Номер 21(6), С. 1345 - 1365
Опубликована: Сен. 3, 2023
ABSTRACTThe current study seeks to predict and optimize the biodiesel production yield physicochemical properties of waste cooking oil. Using Box-Behnken design (BBD), L46 orthogonal arrays were developed for experimentation at five factors three levels. Furthermore, different boosting algorithms (AdaBoost, ExtraTrees, Gradient-Boosting regression) used develop an ML-based prognostic model using experimental data. Based on coefficient determination (R2) (0.997 yield, 0.999 kinematic viscosity, 0.996 calorific value, flash point), has most accurate predictions, followed by ExtraTrees AdaBoost. Through implementation GA, optimal conditions obtained, including a molar ratio 7.24:1, catalyst concentrations 1.49 wt.%, reaction temperatures 65°C, times 59.95 minutes, stirring speeds 733.32 rpm. Experimental validation these optimized is closely aligned with predicted values. evaluates engine performance emission parameters assess impact biodiesel/diesel blends (B10, B20, B30) compared pure diesel. The utilization demonstrates satisfactory performance, effectively reducing carbon monoxide (CO) hydrocarbon (HC) emissions. However, nitrogen oxide (NOx) emissions increase diesel.KEYWORDS: Biodiesel synthesisoptimal controlmachine learninggenetic algorithmphysiochemical propertiesengine Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships could appeared influence work reported in this paper.Consent publicationYesAdditional informationFundingThe author(s) there funding associated featured article.
Язык: Английский
Процитировано
14Sustainable Energy Technologies and Assessments, Год журнала: 2024, Номер 73, С. 104097 - 104097
Опубликована: Ноя. 29, 2024
Язык: Английский
Процитировано
6Processes, Год журнала: 2024, Номер 12(8), С. 1660 - 1660
Опубликована: Авг. 7, 2024
With the continuous advancement of petroleum extraction technologies, importance horizontal and inclined wells in reservoir exploitation has been increasing. However, accurately predicting oil–water two-phase flow regimes is challenging due to complexity subsurface fluid patterns. This paper introduces a novel approach address this challenge by employing extreme gradient boosting (XGBoost, version 2.1.0) optimised through Bayesian techniques (using Bayesian-optimization library, 1.4.3) predict regimes. The integration optimisation aims enhance efficiency parameter tuning precision predictive models. methodology commenced with experimental studies utilising multiphase simulation apparatus gather data across spectrum water cut rate, well inclination angles, rates. Flow patterns were meticulously recorded via direct visual inspection, these empirical datasets subsequently used train validate both conventional XGBoost model its Bayesian-optimised counterpart. A total 64 collected, 48 sets for training 16 testing, divided 3:1 ratio. findings highlight marked improvement accuracy model, achieving testing 93.8%, compared 75% traditional model. Precision, recall, F1-score metrics also showed significant improvements: increased from 0.806 0.938, recall 0.875 0.873 0.938. further supported results, (BO-XGBoost) an 0.948 Comparative analyses demonstrate that enhanced capabilities algorithm. Shapley additive explanations (SHAP) analysis revealed rates, daily rates most features contributing predictions. study confirms efficacy superiority algorithm regimes, offering robust effective investigating complex dynamics. research outcomes are crucial improving predictions introducing innovative technical approaches within domain engineering. work lays foundational stone application studies.
Язык: Английский
Процитировано
4Chemistry Africa, Год журнала: 2025, Номер unknown
Опубликована: Май 3, 2025
Язык: Английский
Процитировано
0ACS Omega, Год журнала: 2024, Номер 9(46), С. 46017 - 46029
Опубликована: Ноя. 7, 2024
By integrating innovative technologies to enhance the efficiency and sustainability of production, this study specifies establishment a cutting-edge growing system for
Язык: Английский
Процитировано
3Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown
Опубликована: Фев. 7, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107235 - 107235
Опубликована: Фев. 12, 2025
Язык: Английский
Процитировано
0Bioresource Technology Reports, Год журнала: 2025, Номер unknown, С. 102066 - 102066
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0