Performance prediction of sludge volume index of oxygenic photogranule based wastewater treatment system using machine learning algorithms DOI

Sidra Yasin,

Abeera Ayaz Ansari, Abdul Kashif Janjua

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 66, С. 106064 - 106064

Опубликована: Авг. 27, 2024

Язык: Английский

Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning DOI

Jia-Qiang Lv,

Lili Du,

Hongyong Lin

и другие.

Bioresource Technology, Год журнала: 2023, Номер 393, С. 130008 - 130008

Опубликована: Ноя. 18, 2023

Язык: Английский

Процитировано

25

Machine learning-driven optimization and application of bimetallic catalysts in peroxymonosulfate activation for degradation of fluoroquinolone antibiotics DOI
Siyuan Jiang, Yuerong Zhou, Wen Xu

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 486, С. 150297 - 150297

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

11

Meta-analysis review for pilot and large-scale constructed wetlands: Design parameters, treatment performance, and influencing factors DOI

Vinh Son Lam,

Thi Cuc Phuong Tran,

Thi-Dieu-Hien Vo

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 927, С. 172140 - 172140

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

9

Optimizing compressive strength of quaternary-blended cement concrete through ensemble-instance-based machine learning DOI
Ammar Babiker, Yassir M. Abbas, M. Iqbal Khan

и другие.

Materials Today Communications, Год журнала: 2024, Номер 39, С. 109150 - 109150

Опубликована: Май 8, 2024

Язык: Английский

Процитировано

8

Automated machine learning-aided prediction and interpretation of gaseous by-products from the hydrothermal liquefaction of biomass DOI
Weijin Zhang,

Zejian Ai,

Qingyue Chen

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 945, С. 173939 - 173939

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

5

Impact analysis of hydraulic loading rate and antibiotics on hybrid constructed wetland systems: Insight into the response to decontamination performance and environmental-associated microbiota DOI

Baoshan Shi,

Xiangju Cheng,

Dantong Zhu

и другие.

Chemosphere, Год журнала: 2023, Номер 347, С. 140678 - 140678

Опубликована: Ноя. 9, 2023

Язык: Английский

Процитировано

11

Evaluation of pollutant removal efficiency of urban stormwater wet ponds and the application of machine learning algorithms DOI
Yang Yang, David Z. Zhu, Mark Loewen

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 905, С. 167119 - 167119

Опубликована: Сен. 17, 2023

Язык: Английский

Процитировано

9

Microbial-Guided prediction of methane and sulfide production in Sewers: Integrating mechanistic models with Machine learning DOI

Wan-Xin Yin,

Jia-Qiang Lv,

Shuai Liu

и другие.

Bioresource Technology, Год журнала: 2024, Номер 415, С. 131640 - 131640

Опубликована: Окт. 16, 2024

Язык: Английский

Процитировано

3

Automated machine learning-assisted analysis of biomass catalytic pyrolysis for selective production of benzene, toluene, and xylene DOI
Zihang Zhang, Jinlong Liu, Weiming Yi

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135389 - 135389

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Tracing antibiotics in sewers: concentrations, measurement techniques, and mathematical approaches DOI Creative Commons
Carlos Montes, S. Zubillaga Guerrero, María del Valle Fernández Moreno

и другие.

Water Science & Technology, Год журнала: 2025, Номер unknown

Опубликована: Апрель 15, 2025

ABSTRACT Antibiotic contamination in sewer networks has significant environmental and health concerns worldwide, mainly due to the risk of contributing an increase bacterial resistance. In this literature review, antibiotic concentrations reported urban sewers hospital effluents, techniques for antimicrobial compound detection quantification, current modeling strategies are analyzed discussed based on 91 papers published between 2014 2024. Eighty studies 109 compounds showing that sulfonamides, fluoroquinolones, macrolides most frequently detected classes, while amphenicols aminocyclitols least monitored. Advanced analytical such as liquid chromatography mass spectrometry common approaches used quantification. Few mathematical models have been developed, including kinetic models, widely wastewater-based epidemiology (WBE) quotient (RQ) approaches. A total 992 reports were compiled proposed a dataset, which is expected be useful further research, especially global monitoring, development predictive policy regulatory these pharmaceutical systems.

Язык: Английский

Процитировано

0