Building and Environment, Год журнала: 2024, Номер 269, С. 112352 - 112352
Опубликована: Дек. 7, 2024
Язык: Английский
Building and Environment, Год журнала: 2024, Номер 269, С. 112352 - 112352
Опубликована: Дек. 7, 2024
Язык: Английский
Urban Informatics, Год журнала: 2024, Номер 3(1)
Опубликована: Окт. 14, 2024
Abstract The digital transformation of modern cities by integrating advanced information, communication, and computing technologies has marked the epoch data-driven smart city applications for efficient sustainable urban management. Despite their effectiveness, these often rely on massive amounts high-dimensional multi-domain data monitoring characterizing different sub-systems, presenting challenges in application areas that are limited quality availability, as well costly efforts generating scenarios design alternatives. As an emerging research area deep learning, Generative Artificial Intelligence (GenAI) models have demonstrated unique values content generation. This paper aims to explore innovative integration GenAI techniques twins address planning management built environments with focuses various such transportation, energy, water, building infrastructure. survey starts introduction cutting-edge generative AI models, Adversarial Networks (GAN), Variational Autoencoders (VAEs), Pre-trained Transformer (GPT), followed a scoping review existing science leverage intelligent autonomous capability facilitate research, operations, critical subsystems, holistic environment. Based review, we discuss potential opportunities technical strategies integrate into next-generation more intelligent, scalable, automated development
Язык: Английский
Процитировано
17Energy and Buildings, Год журнала: 2024, Номер 305, С. 113876 - 113876
Опубликована: Янв. 3, 2024
Язык: Английский
Процитировано
16Advances in wind engineering., Год журнала: 2025, Номер unknown, С. 100042 - 100042
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Building and Environment, Год журнала: 2024, Номер 253, С. 111357 - 111357
Опубликована: Фев. 26, 2024
Язык: Английский
Процитировано
8Building and Environment, Год журнала: 2024, Номер 253, С. 111157 - 111157
Опубликована: Янв. 4, 2024
Язык: Английский
Процитировано
6Building and Environment, Год журнала: 2024, Номер unknown, С. 112142 - 112142
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
6Energy and Buildings, Год журнала: 2024, Номер 316, С. 114295 - 114295
Опубликована: Май 15, 2024
Язык: Английский
Процитировано
4Meccanica, Год журнала: 2024, Номер unknown
Опубликована: Июнь 6, 2024
Abstract The use of computational fluid dynamics (CFD) in the wind engineering (WE) is generally defined as (CWE). Since its foundation 2004, OpenFOAM CWE has been increasing progressively and covers nowadays a wide range topics, from environment to structural engineering. This paper was drafted response invitation organizers 18th workshop held Genoa (Italy) on 11–14 July 2023, when technical session Civil Engineering Wind organized. In this author briefly reviews history WE surveys evolution, methods, future challenges CWE. Topics are here regrouped into three main research areas discussed physical, purely perspective. study does not cover Energy related since can be considered stand-alone subfield WE. review confirms that versatile tool widely used for applications often require new models developed ad hoc by CFD users. It coupled easily with numerical weather prediction mesoscale-microscale thermal studies, building energy simulation determine demand, finite element method design. represents an extraordinary opportunity all users worldwide share codes case explore potential functionalities strengthen network within community.
Язык: Английский
Процитировано
4Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 111756 - 111756
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0