Computers in Human Behavior, Год журнала: 2024, Номер unknown, С. 108517 - 108517
Опубликована: Ноя. 1, 2024
Язык: Английский
Computers in Human Behavior, Год журнала: 2024, Номер unknown, С. 108517 - 108517
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Retailing and Consumer Services, Год журнала: 2024, Номер 79, С. 103802 - 103802
Опубликована: Март 14, 2024
Язык: Английский
Процитировано
37Technology in Society, Год журнала: 2025, Номер unknown, С. 102825 - 102825
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
3Environmental Impact Assessment Review, Год журнала: 2025, Номер 112, С. 107840 - 107840
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
1Sustainability, Год журнала: 2024, Номер 16(3), С. 1189 - 1189
Опубликована: Янв. 31, 2024
The growing global emphasis on environmental issues has driven companies to exert greater efforts making their products more sustainable. Natural dyeing, an eco-friendly dyeing method used in the textile and apparel industry, is safer for both environment human health, aligning with needs of sustainable design development. This paper examines key factors affecting Chinese consumers’ satisfaction naturally dyed garments, aiming provide research-based strategies development such garments. In this study, we utilized KJ detailed categorization functionalities establishing five dimensions thirty demand indicators. Based this, KANO model, coupled Better–Worse coefficient quadrant analysis method, was classify different items, ranking importance. results indicate that wearing experience characteristics are determinants influencing clothing. top significantly impacting product satisfaction, descending order importance, comfort, environmentally friendly techniques, safety, degradability, durability. Therefore, ensure consumer clothing, these should be prioritized when a support system caters needs. Our findings can help better understand actual need enabling targeted optimization enhancing competitiveness, promoting green transformation enterprises. Simultaneously, study also contributes novel theoretical approaches ideas future research demand.
Язык: Английский
Процитировано
6Current Psychology, Год журнала: 2024, Номер unknown
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
4SSRN Electronic Journal, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
In the intricate tapestry of e-commerce, where human-generated content unveils a burst sentiments within visual expressions, our research propels exploration sentiment analysis methodologies. Focused on deciphering nuanced emotional undertones user-generated content, approach integrates deep learning, semantic text analysis, and human-robot interaction. The interplay these methodologies resonates with explosion inherent in human expression, acknowledging multifaceted nature encapsulated pixels. Our methodology begins learning assisted (DLSTA), robust framework designed for emotion detection using big data. By harnessing word embeddings natural language processing, model delves into syntactic intricacies textual achieving an expressively superior rate 98.76% classification accuracy 98.67%. Expanding beyond nuances, extends to adapting developed dynamic landscape e-commerce. User-generated product images become focal points, adaptability is showcased through precision, recall, F1 score metrics across ten samples. expressions acknowledged, each image presenting unique that navigates interpretative finesse. Human-robot interaction emerges as pivotal layer methodology, injecting complexity depth analysis. between intuition computational precision mirrors capturing not only static but evolving stream encountered digital marketplace.
Язык: Английский
Процитировано
0Frontiers in Sustainable Food Systems, Год журнала: 2025, Номер 9
Опубликована: Янв. 22, 2025
Introduction With the growing awareness of sustainable development, organic food has been favored by consumers due to its advantages in both human health and environmental sustainability. However, economic ecological values have two factors that weigh. Online reviews, as an important source data for capturing consumers’ perceived value, especially temporal information provide new opportunities revealing dynamic impact value on satisfaction. Methods Based 63,674 online this study utilizes structural topic modeling identify specific dimensions perceptions food, incorporates multiple linear regression explore effects these consumer satisfaction their trends. Results The results indicate significantly enhance with food. Further, found positive effect increased over time, while gradually weakened. Discussion This theoretically provides a research idea based review data, reveals satisfaction, adding perspective consumption research. Practically, reference marketing product optimization industry, terms behavior analysis market positioning.
Язык: Английский
Процитировано
0International Journal of Environmental Research, Год журнала: 2025, Номер 19(3)
Опубликована: Фев. 25, 2025
Язык: Английский
Процитировано
0International Journal of Information Management, Год журнала: 2025, Номер 83, С. 102890 - 102890
Опубликована: Март 7, 2025
Язык: Английский
Процитировано
0Energy Policy, Год журнала: 2025, Номер 202, С. 114593 - 114593
Опубликована: Март 11, 2025
Язык: Английский
Процитировано
0