Optimization on Electric Construction Machinery Considering Time‐of‐Use Electricity Price Based on the Improved Crested Porcupine Optimizer Algorithm DOI Creative Commons
Dawei Wang, Bo Gao, Lei Zhang

и другие.

Energy Science & Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 30, 2025

ABSTRACT Optimization scheduling plays a pivotal role in construction projects, significantly influencing both the overall project schedule and its efficiency. This study focuses on optimizing of electric highway engineering projects within roadbed construction. The research considers multiple earthmoving processes optimizes working time each piece equipment, taking into account capacity speed limited week. is further contextualized by use regional time‐of‐use (TOU) electricity pricing. A sophisticated optimization model developed to simulate optimal machinery operation, striking balance between energy consumption work paper introduces an innovative algorithm, improved crested porcupine optimizer (ICPO), which incorporates Latin hypercube sampling for population initialization. To enhance algorithmic effectiveness, combined strategy parallel compact processing employed. approach reduces number iterations required consequently lowers consumption. Rigorous analysis comparison with existing algorithms demonstrate that ICPO iteration count financial expenditure. Simulation results validate accuracy practicality proposed showing reduction over 7%

Язык: Английский

Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times DOI
Guohui Zhang, Shaofeng Yan, Xiaohui Song

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 107974 - 107974

Опубликована: Фев. 13, 2024

Язык: Английский

Процитировано

21

Manufacturing resource-based self-organizing scheduling using multi-agent system and deep reinforcement learning DOI

Yuxin Li,

Qihao Liu,

Xinyu Li

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 79, С. 179 - 198

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

5

Dynamic Job-Shop Scheduling via Graph Attention Networks and Deep Reinforcement Learning DOI
Chien‐Liang Liu, Chun-Jan Tseng, P.S. Weng

и другие.

IEEE Transactions on Industrial Informatics, Год журнала: 2024, Номер 20(6), С. 8662 - 8672

Опубликована: Март 21, 2024

The dynamic job-shop scheduling problem (DJSSP) is an advanced form of the classical (JSSP), incorporating events that make it even more challenging. This article proposes a novel approach involving deep reinforcement learning and graph neural networks to solve this optimization problem. To effectively model DJSSP, we use disjunctive graph, designing specific node features reflect unique characteristics JSSP with machine breakdowns stochastic job arrivals. Our proposed method can dynamically adapt occurrence disruptions, ensuring accurately reflects current state environment. Furthermore, attention mechanism prioritize crucial nodes while discarding irrelevant ones. study applies learn embeddings, serving as input for actor–critic model. proximal policy then utilized train model, which assists in operations machines. We conducted extensive experiments static public environments. Experimental results indicate our superior state-of-the-art methods.

Язык: Английский

Процитировано

10

A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses DOI
Kunpeng Li,

Tengbo Liu,

P.N. Ram Kumar

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 185, С. 103518 - 103518

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

10

Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions DOI

Maziyar Khadivi,

Todd Charter, Marjan Yaghoubi

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110856 - 110856

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Digital twin-driven dynamic scheduling for the assembly workshop of complex products with workers allocation DOI

Qinglin Gao,

Jianhua Liu,

Huiting Li

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 89, С. 102786 - 102786

Опубликована: Май 25, 2024

Язык: Английский

Процитировано

8

An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems DOI
Wenyu Zhang, Jie Gan,

Shuguang He

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110129 - 110129

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

6

Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning DOI
Chupeng Su, Cong Zhang, Chuang Wang

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 88, С. 101605 - 101605

Опубликована: Май 28, 2024

Язык: Английский

Процитировано

6

Dynamic flexible scheduling with transportation constraints by multi-agent reinforcement learning DOI
Lixiang Zhang, Yan Yan, Yaoguang Hu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 134, С. 108699 - 108699

Опубликована: Май 30, 2024

Язык: Английский

Процитировано

5